Ab initio Calculations of Light-ion Reactions
No-core shell model & Resonating group method

- **Combine** the *ab initio* no-core shell model (NCSM) with the resonating group method (RGM)

- **The NCSM**: An approach to the solution of the A-nucleon bound-state problem
 - Accurate nuclear Hamiltonian
 - Finite harmonic oscillator (HO) basis
 - Complete $N_{\text{max}} f_{\Omega}$ model space
 - Relative or single-particle coordinates
 - Effective interaction due to the model space truncation
 - Similarity-Renormalization-Group evolved NN(+NNN) potential
 - Short & medium range correlations, no continuum
 - Description of single-particle degrees of freedom

- **The RGM**: A microscopic approach to the A-nucleon scattering of clusters
 - Nuclear Hamiltonian may be simplistic
 - Cluster wave functions may be simplified and inconsistent with the nuclear Hamiltonian
 - Long range correlations
 - Description of clusters and their relative motion

Ab initio NCSM/RGM: Combines the best of both approaches
- Accurate nuclear Hamiltonian, consistent cluster wave functions
- Coupling to continuum, Pauli principle and translational invariance
The \textit{ab initio} NCSM/RGM in a snapshot

- Ansatz: \[\Psi^{(A)} = \sum_v \int d\vec{r} \varphi_v(\vec{r}) \hat{A} \Phi^{(A-a,a)}_{\nu\vec{r}} \]

- Many-body Schrödinger equation:

\[H \Psi^{(A)} = E \Psi^{(A)} \]

\[\sum_v \int d\vec{r} \left[\mathcal{H}_{\mu\nu}^{(A-a,a)}(\vec{r}', \vec{r}) - E \mathcal{N}_{\mu\nu}^{(A-a,a)}(\vec{r}', \vec{r}) \right] \varphi_v(\vec{r}) = 0 \]

- Hamiltonian kernel: \(\langle \Phi^{(A-a,a)}_{\mu\vec{r}} | \hat{A} H \hat{A} | \Phi^{(A-a,a)}_{\nu\vec{r}} \rangle \)

- Norm kernel: \(\langle \Phi^{(A-a,a)}_{\mu\vec{r}} | \hat{A}^2 | \Phi^{(A-a,a)}_{\nu\vec{r}} \rangle \)

- Non-local integro-differential coupled-channel equations:

\[\left[\hat{T}_{\text{rel}}(r) + \hat{V}_C(r) - (E - E_V) \right] u_{\nu}(r) + \sum_v \int d\vec{r}' r' W_{\nu\nu'}(r, r') u_{\nu'}(r') = 0 \]

NCSM/RGM: NCSM microscopic wave functions for the clusters involved, and realistic (bare or derived NCSM effective) interactions among nucleons. Proper boundary conditions for scattering and/or bound states.

eigenstates of \(H^{(A-a)} \) and \(H^{(a)} \) in the \textit{ab initio} NCSM basis

realistic nuclear Hamiltonian

N = 1, J = \frac{1}{2} (^1S_{1/2})

N^3LO

\(n + \alpha(g.s.) \)

\[W_{\nu\nu'}(r, r') \text{ [MeV fm}^3\text{]} \]
\(n + ^4\text{He} \) differential cross section and analyzing power

- NCSM/RGM calculations with
 - \(N + ^4\text{He}(\text{g.s., } 0^+0) \)
 - SRG-N^3LO NN potential with \(\Lambda=2.02 \text{ fm}^{-1} \)

- Differential cross section and analyzing power @17 MeV neutron energy
 - Polarized neutron experiment at Karlsruhe

NNN missing: Good agreement only for energies beyond low-lying 3/2^- resonance
$p+^{4}\text{He}$ differential cross section and analyzing power
Neutron-triton elastic scattering at 14 MeV

- Important for the NIF physics
 - deuteron-triton fusion generates 14 MeV neutrons
- Experimental situation confusing
- Good data for $p^+\,^3\text{He}$ elastic scattering

Use NCSM/RGM calculation to relate the two reactions and predict $n^+\,^3\text{H}$ cross section

Supported by PEM
$p + ^7Be$ scattering

- $N_{\text{max}} = 12$ NCSM/RGM calculation with $p + ^7Be(g.s.,1/2^-, 7/2^-)$
 - SRG-N3LO NN potential with $\Lambda = 2.02$ fm$^{-1}$
 - 8B 2^+ state unbound by 200 keV (experimentally bound by 137 keV)

- Predict: $0^+, 1^+, 2^+$ resonances
 - No evidence for 2^- resonance

- Scattering length:
 - Expt: $a_{02} = -7(3)$ fm
 - Calc: $a_{02} = -10.2$ fm

- Excellent prospects for calculating $^7Be(p,\gamma)^8B$
What is the ground state of 9He?

- NCSM/RGM calculation of $n^+\ ^{8}$He
 - SRG-N^3LO NN potential with $\Lambda = 2.02$ fm$^{-1}$
 - 8He 0^+ g.s. and 2^+, 1^+ excited states included
 - Up to $N_{\text{max}} = 10$

![Diagram](image-url)
What is the structure of 10Li?

- NCSM/RGM calculation of n^{+9}Li
 - SRG-N^3LO NN potential with $\Lambda = 2.02$ fm$^{-1}$
 - 9Li $3/2^-$ g.s. and $1/2^-, 5/2^-$ excited states included
 - Up to $N_{\text{max}}=6$

Preliminary results:
- No bound states
- 2^-, 1^- S-waves closer to threshold
- P-waves ordering: $1^+, 0^+, 2^+$
Toward the first \textit{ab initio} calculation of the Deuterium-Tritium fusion

\[\int dr \ r^2 \left(\langle r' \alpha_n | \hat{\mathbf{A}}_1 (H - E) \hat{\mathbf{A}}_1 | \alpha_n r \rangle + \langle r' \alpha_n | \hat{\mathbf{A}}_2 (H - E) \hat{\mathbf{A}}_2 | 3^\text{H} d \rangle \right) = 0\]

- \(d + 3^\text{H} \rightarrow d + 3^\text{H}\) \textit{exchange} part of norm kern
 - S-wave channel: \(J=3/2^+, J=1/2^+\)

\[d(\uparrow) + 3^\text{H}(\uparrow)\]

\[d(\uparrow) + 3^\text{H}(\downarrow)\]
$d^+{^3}H$ and $n^+{^4}He$ elastic scattering: phase shifts

- **$d^+{^3}H$ elastic phase shifts:**
 - Resonance in the $^4S_{3/2}$ channel
 - Repulsive behavior in the $^2S_{1/2}$ channel → Pauli principle

- **$n^+{^4}He$ elastic phase shifts:**
 - $d^+{^3}H$ channels produces slight increase of the P phase shifts
 - Appearance of resonance in the $3/2^+ D$-wave, just above $d^+{^3}H$ threshold

The D-T fusion takes place through a transition of $d^+{^3}H$ is S-wave to $n^+{^4}He$ in D-wave
The first results, still preliminary:
- \(N_{\text{max}} = 11 \) (d-T), 13 (d-\(^3\)He)
- SRG-N\(^3\)LO NN (\(\Lambda = 1.5 \text{ fm}^{-1} \)) potential
- NNN interaction interaction effects for \(A = 3, 4, 5 \) partly included by the choice of \(\Lambda \)
- Only g.s. of \(d, \ 3\)H, \(4\)He included above

\[
S(E) = E\sigma(E)\exp\left(\frac{2\pi Z_1 Z_2 e^2}{\hbar \sqrt{2mE}} \right)
\]

Supported by PEM, LDRD
The cross section improves with the inclusion of virtual breakup of the deuteron

- Deuteron weakly bound: easily gets polarized and easily breaks
- These effects included below the breakup threshold with continuum discretized by excited deuteron pseudo-states

First *ab initio* results for *d*-T and *d*-³He fusion:
Very promising, correct physics, becoming competitive with fitted evaluations …
NCSM/RGM \textit{ab initio} calculation of d-^{4}He scattering

- NCSM/RGM calculation with $d + ^{4}\text{He}(\text{g.s.})$ up to $N_{\text{max}} = 10$
 - SRG-N3LO potential with $\Lambda = 1.5$ fm$^{-1}$
 - Deuteron breakup effects included by continuum discretized by pseudo states in 3S_1-3D_1, 3D_2 and 3D_3-3G_3 channels

The 1^+0 ground state bound by 1.9 MeV (expt. 1.47 MeV)
- Calculated $T=0$ resonances: 3^+, 2^+ and 1^+ in correct order close to expt. energies

Supported by LDRD
FY10 accomplishments

- Development of *ab initio* many-body reaction theory by merging the NCSM and the RGM (P. Navratil and S. Quaglioni)
 - Results with NN potentials used by UNEDF collaboration
 - p-7Be with SRG-N^3LO using the importance-truncated NCSM
 - n-8He with SRG-N^3LO
 - n-9Li with SRG-N^3LO
 - Collaboration with R. Roth (TU Darmstadt)
 - Deuteron-nucleus scattering: d+4He
 - 3H(d,n)4He and 3He(d,p)4He fusion cross section calculations
 - Development of 3H & 3He projectile formalism

- Development of the TRDENS transition density code
 - three-body density for A=3,4 nuclei

- SRG evolution of NN+NNN interactions in the p-shell
 - Collaboration with E. Jurgenson (LLNL) and R. Furnstahl (OSU)

- A=14 nuclei with chiral EFT NN+NNN up to N_{max}=8
 - Transformation of NNN to SD basis up to N_{max}=8
 - Collaboration with J. Vary, P. Maris, H. Nam, E. Ormand and D. Dean
Publications relevant to UNEDF in 2009/2010

- P. Navratil, R. Roth, and S. Quaglioni, “Ab initio many-body calculations of nucleon scattering on 4He, 7Li, 7Be, 12C and 16O”, in preparation, (2010).

- Lisetskiy, AF; Kruse, MKG; Barrett, BR; Navratil, P; Stetcu, I; Vary, JP. "Effective operators from exact many-body renormalization", Phys. Rev. C 80, 024315 (2009).

Future plan

- The rest of Year 4 and Year 5
 - n^{-8}He, n^{-9}Li calculations
 - Continue work on d^{-3}H fusion (supported by PEM, LDRD)
 - Development of 3H and 3He – nucleus formalism (supported by LDRD)
 - Development of the coupling of NCSM/RGM and NCSM \rightarrow NCSMC
 - Similarity-renormalization-group evolution of NN+NNN interactions
 - Application to p-shell nuclei (supported by DOE/SC/NP)
 - Further development of importance-truncation NCSM scheme
 - High profile science: Capture reactions
 - 7Be$(p,\gamma)^8$B
 - 3He$(\alpha,\gamma)^7$Be

- Computational challenges:
 - n-body density ($n>2$) calculations
 - Distribution of structure allocation, parallelization