Toward Ab Initio DFT for Nuclei: The Optimized Effective Potential

Joaquín E. Drut
The Ohio State University

UNEDF Collaboration meeting,
East Lansing, MI, June 2010.
Colleagues

Dick Furnstahl
The Ohio State University

Lucas Platter
Institute for Nuclear Theory
Plan

- Two roads to ab initio DFT
 - Density Matrix Expansion
 - Optimized Effective Potential
 - Three comments
 - Solving the OEP equation exactly

- OEP for Pairing

- Done & to do
Two roads to ab initio DFT

Road 1 Density Matrix Expansion (DME) (Negele & Vautherin)

- Expand the **density matrix (DM)** in terms of **local densities**, **gradients**, and **kinetic energy densities**.

\[
\rho(R_1, R_2)
\]

Angle averaged DM

\[
\hat{\rho}(R + s/2, R - s/2)
\]
Two roads to ab initio DFT

Road 1
Density Matrix Expansion (DME) (Negele & Vautherin)

- Expand the density matrix (DM) in terms of local densities, gradients, and kinetic energy densities.

\[
\hat{\rho}(R + s/2, R - s/2) = \frac{1}{2} \int dx \exp \left[x \cdot s \cdot (\nabla_1 - \nabla_2)/2 \right] \rho(R_1, R_2) \bigg|_{R_1 = R_2 = R} \\
= \frac{1}{sk_F(R)} \left[\sum_{n=0}^{\infty} (4n + 3)j_{2n+1}(sk_F(R)) Q_n \left(\frac{(\nabla_1 - \nabla_2)^2}{2k_F(R)} \right) \right] \rho(R_1, R_2) \bigg|_{R_1 = R_2 = R} \\
\approx \rho_{SL}(k_F(R)s) \rho(R) + s^2 g(k_F(R)s) \left[\frac{1}{4} \nabla^2 \rho(R) - \tau(R) + \frac{3}{5} k_F(R)^2 \rho(R) \right]
\]

\(k_F \) is an arbitrary scale (here \(k_F(R) = (3\pi^2 \rho(R)/2)^{1/3} \)) of no effect if all terms are included.

- See talk by J. Dobaczewski

- Phase-space averaging techniques improve on plain DME dramatically! (DME-PSA, see talk by Scott Bogner)

Tuesday, June 22, 2010
Two roads to ab initio DFT

And he [Jacob] dreamed, and behold a ladder set up on the earth, and the top of it reached to heaven . . . ” [Genesis 28:12]
Two roads to ab initio DFT

- LDA
 “Take the density-dependent energy of the uniform system and replace ρ with $\rho(r)$...”
 - Very easy to implement
 - Not very accurate, in many cases not even qualitatively accurate
Two roads to ab initio DFT

- **GGA** “Take the LDA and add gradient corrections…”
 - Great improvement over LDA
 - Still has some difficult problems: - Absence of negative ions
 - van der Waals forces
 - Self-interaction errors

- **LDA** “Take the density-dependent energy of the uniform system and replace ρ with $\rho(\mathbf{r})$ …”
 - Very easy to implement
 - Not very accurate, in many cases not even qualitatively
Two roads to ab initio DFT

Optimized Effective Potential (OEP)

“Allow for explicit KS orbital dependence …”
- Harder to implement
- Computationally more expensive
- Allows for exact exchange, solves many of the problems of GGAs

GGA “Take the LDA and add gradient corrections…”
- Great improvement over LDA
- Still has some difficult problems:
 - Absence of negative ions
 - van der Waals forces
 - Self-interaction errors

LDA “Take the density-dependent energy of the uniform system and replace ρ with $\rho(\mathbf{r})$ …”
- Very easy to implement
- Not very accurate, in many cases not even qualitatively
Three comments on the OEP

I. Self-interaction errors (see Kümmel & Kronik, RMP (2008))

- Each electron feels the repulsion of the total charge of the system, **including its own**!

 Insufficient binding

 Wrong prediction of unstable anions

- Should we worry about this for nuclei?
Three comments on the OEP

II. Derivative discontinuities in \(\mu \equiv \frac{\delta E_{\text{tot}}}{\delta n(r)} \),
(see Kümmel & Kronik, RMP (2008))

Consider two well-separated neutral atoms in equilibrium
i.e. the energy is at a minimum...

Assume \(\mu(X) > \mu(Y) \)

Then we can continuously shift charge from \(Y \) to \(X \) and lower
the energy... but how can the energy be at a new
minimum if the atoms are now charged?!

Paradox. The chemical potential is not a continuous
function of the particle number.

Jacob’s ladder

Tuesday, June 22, 2010
Three comments on the OEP

III. RPA! (Capture low-amplitude collective modes)

- Use adiabatic connection:

\[
E_{xc} = \frac{1}{2} \int d^3r \int d^3r' \frac{e^2}{|\vec{r} - \vec{r}'|} \int_0^1 d\lambda \left(-\frac{1}{\pi} \int_0^\infty d\omega \text{Im} \chi_\lambda(\vec{r}, \vec{r}', \omega) - n(\vec{r}) \delta(\vec{r} - \vec{r}') \right)
\]

\[
\chi_\lambda(\vec{r}, \vec{r}', \omega) = \chi_{KS}(\vec{r}, \vec{r}', \omega) + \int d^3x \int d^3y \chi_{KS}(\vec{r}, \vec{x}, \omega) \left(\frac{\lambda e^2}{|\vec{x} - \vec{y}|} + f_{xc,\lambda}(\vec{x}, \vec{y}, \omega) \right) \chi_\lambda(\vec{y}, \vec{r}', \omega)
\]

\[
\chi_{KS}(\vec{r}, \vec{r}', \omega) = \lim_{\eta \to 0} \sum_{\eta=\uparrow, \downarrow} \sum_{j,k} (f_{k,\sigma} - f_{j,\sigma}) \frac{\varphi_{j,\sigma}(\vec{r}) \varphi_{k,\sigma}^*(\vec{r}) \varphi_{j,\sigma}(\vec{r}') \varphi_{k,\sigma}^*(\vec{r}')}{\omega - (\epsilon_{j,\sigma} - \epsilon_{k,\sigma}) + i\eta}
\]

- Combine with short- and long-range splitting:

\[
\frac{1}{|\vec{r}_i - \vec{r}_j|} = \text{erf}(\mu|\vec{r}_i - \vec{r}_j|) + \frac{1 - \text{erf}(\mu|\vec{r}_i - \vec{r}_j|)}{|\vec{r}_i - \vec{r}_j|}
\]

Jacob’s ladder
Kohn-Sham DFT

- Kohn-Sham approach
 “The density functional can be optimized by solving a Schrödinger-like problem...”

\[
F_{HK}[\rho] = T_s[\rho] + E_{int}[\rho]
\]

- Kohn-Sham equations

\[
\left[-\frac{\nabla^2}{2m} + v_{KS}(r) \right] \varphi_k(r) = \epsilon_k \varphi_k(r)
\]

- Solve recursively:
 - Start with guess for orbitals
 - Compute potential
 - Solve for orbitals

\[
\rho(x) = \sum_{k=1}^{N} |\varphi_k(x)|
\]
The OEP equation

- **OEP integral equation**

\[
\int dx' \ Q(x, x') v_{xc}(x') = \Lambda(x)
\]

\[
Q(x, x') = \sum_{j=1}^{N} \phi_j^*(x') G_j(x', x) \phi_j(x) + \text{c.c.}
\]

\[
\Lambda(x) = \sum_{j=1}^{N} \int dx' \ \phi_j^*(x') u_{xc,j}(x') G_j(x', x) \phi_j(x) + \text{c.c.}
\]

Green’s function

\[
G_j(x', x) = \sum_{k \neq j} \frac{\phi_k(x') \phi_k^*(x)}{\epsilon_j - \epsilon_k}
\]

Auxiliary potential

\[
u_{xc,j}(x') = \frac{1}{\phi_j^*(x')} \frac{\delta E_{int}}{\delta \phi_j(x')}
\]

- Sum over occupied and unoccupied states!
The OEP equation

- OEP integral equation

\[\int dx' \, Q(x, x')v_{xc}(x') = \Lambda(x) \]
Solving the OEP equation

Two problems:

- Constructing the Green’s function explicitly may be expensive
- The OEP equation is singular

\[
\sum_{k=1}^{N} \psi_k^*(x) \varphi_k(x) + \text{c.c.} = 0
\]

\[
(\hat{h}_{KS} - \varepsilon_i) \psi_i^*(x) = - \left[\Delta_i(x) - \bar{\Delta}_i \right] \varphi_i(x)
\]

\[
\Delta_i(x) = v_{xc}(x) - u_{xc,i}(x)
\]

\[
u_{xc,j}(x') = \frac{1}{\varphi_j^*(x')} \frac{\delta E_{int}}{\delta \varphi_j(x')}
\]
Solving the OEP equation

- Kümmel-Perdew Iterative solution
 - Guess xc potential and compute $\psi_i^*(x)$
 \[
 \Delta_i(x) = v_{xc}(x) - u_{xc,i}(x)
 \]
 \[
 (\hat{h}_{KS} - \varepsilon_i)\psi_i^*(x) = - \left[\Delta_i(x) - \bar{\Delta}_i \right] \varphi_i(x)
 \]
 - Update xc potential
 \[
 v_{xc}^{new} = v_{xc}^{old} + cS(x)
 \]
 \[
 S(x) = \sum_{i=1}^{N} \psi_i^*(x)\varphi_i(x) + c.c.
 \]
 - Recompute $\psi_i^*(x)$
 - Repeat until
 \[
 \sum_{k=1}^{N} \psi_k^*(x)\varphi_k(x) + c.c. = 0
 \]
 - Go back to KS equation and recompute $\varphi_i(x)$

Use Conjugate gradients!
Results in 1D

- Gaussian interaction. Exact exchange functional

8+8 fermions in 1D
Results in 1D

- Gaussian interaction. Exact exchange functional

Density profile
Results in 1D

- Gaussian interaction. Exact exchange functional

Density profile
Results in 1D

- Gaussian interaction. Exact exchange functional

Density profile
Results in 1D

- Gaussian interaction. Exact exchange functional

Density profile
Results in 1D

- Gaussian interaction. Exact exchange functional

Density profile
Results in 1D

- Gaussian interaction. Exact exchange functional
- 8 fermions in 1D

Harmonic trap

Negele interaction (2 gaussians)
Results in 1D

- Gaussian interaction. Exact exchange functional

8 fermions in 1D
Results in 1D

• Gaussian interaction. Exact exchange functional

8 fermions in 1D
OEP for pairing

Notation

KS-HFB Equations

\[h\Phi_k = E_k \Phi_k \]

\[h_{rr'} = \begin{pmatrix} \hat{h}_s \delta(r-r') & D_s(r,r') \\ D_s^*(r,r') & -\hat{h}_s \delta(r-r') \end{pmatrix} \]

Kohn-Sham potentials

\[v_s(r) = v_{ext}(r) + v_H(r) + v_{xc}(r) \]

\[D_s(r,r') = D_{ext}(r,r') + D_H(r,r') + D_{xc}(r,r') \]

Orbitals

\[\Phi_k(r) = \begin{pmatrix} u_k(r) \\ v_k(r) \end{pmatrix} \]

Exchange-correlation potentials

\[v_{xc}(r) = \frac{\delta E_{xc}}{\delta n(r)} \]

\[D_{xc}(r) = -\frac{\delta E_{xc}}{\delta \Delta^*(r,r')} \]

Order parameter fields

\[n(r) \equiv 2 \sum_k \left[|u_k(r)|^2 f(E_k) + |v_k(r)|^2 f(-E_k) \right] \]

\[\Delta(r,r') \equiv \sum_k \left[v_k^*(r')u_k(r)f(-E_k) + v_k^*(r)u_k(r')f(E_k) \right] \]
OEP for pairing

Two coupled integral equations.

\[\sum_k \Psi^*_{G,k}(r) \Phi_k(r) = 0 \]

\[\Psi^*_{G,k}(r) \equiv \int d^3r' G_k(r', r) \left[\frac{\delta E_{xc}}{\delta \Phi_k(r')} - \int d^3r'' v_{xc}(r'') \frac{\delta n(r'')}{\delta \Phi_k(r')} \right. \]

\[\left. - \int d^3r'' d^3r''' D_{xc}(r''', r'') \frac{\delta \Delta(r''', r'')}{\delta \Phi_k(r')} \right] \]

\[\sum_k \Psi^*_{F,k}(r, r') \Phi_k(r) \Phi_k(r') = 0 \]

\[\Psi^*_{F,k}(r, s) \equiv \int d^3r' F_k(r', r, s) \left[\frac{\delta E_{xc}}{\delta \Phi_k(r')} - \int d^3r'' v_{xc}(r'') \frac{\delta n(r'')}{\delta \Phi_k(r')} \right. \]

\[\left. - \int d^3r'' d^3r''' D_{xc}(r''', r'') \frac{\delta \Delta(r''', r'')}{\delta \Phi_k(r')} \right] \]

\[\frac{\delta \Phi_k(r)}{\delta v_s(r')} = G_k(r, r') \Phi_k(r') \]

\[\frac{\delta \Phi_k(r)}{\delta D_s(r', r'')} = F_k(r, r', r'') \Phi_k(r') \Phi_k(r''). \]
Done / To do

- Implemented full **OEP** solution in 1D (Kümmel-Perdew algorithm) ✔
 - Allows for orbital-dependent functionals
 - Solves formal and practical problems of GGAs
 - Allows for exact exchange, RPA, Pairing, etc...

- Tested 1D proof-of-concept against Hartree-Fock ✔

- Derived OEP-HFB equations (first time) ✔

- 3D code under development (framework in place, now debugging)

- Minnesota potential & compare with HF, HF-DME, NCSM, GFMC

- RPA?

- QRPA?