Neutron and nuclear matter with 3N interactions

Kai Hebeler (TRIUMF)

East Lansing, MI, June 23, 2010

A. Schwenk, T. Duguet, T. Lesinski, S. Bogner, R. Furnstahl
Significance of nuclear and neutron matter results

• for the extremes of astrophysics: neutron stars, supernovae, neutrino interactions with nuclear matter

• microscopic constraints of nuclear energy-density functionals, next-generation Skyrme functionals

\[\mathcal{E} = \frac{\tau}{2M} + A[\rho] + B[\rho] + C[\rho] |\nabla \rho|^2 + \cdots \]

• universal properties at low densities \(\rightarrow \) ultracold Fermi gases

My focus: Development of efficient methods to include 3N forces in microscopic many-body calculations of nucleonic matter
Reminder: Chiral EFT for nuclear forces

\[
\mathcal{O} \left(\frac{Q^0}{\Lambda^0} \right) \quad \mathcal{O} \left(\frac{Q^2}{\Lambda^2} \right) \quad \mathcal{O} \left(\frac{Q^4}{\Lambda^4} \right)
\]

<table>
<thead>
<tr>
<th>LO</th>
<th>NN</th>
<th>3N</th>
<th>4N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1), (c_3), (c_4) terms</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_D) term</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(c_E) term</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

large uncertainties in coupling constants at present:

\[
c_1 = -0.9^{+0.2}_{-0.5}, \quad c_3 = -4.7^{+1.5}_{-1.0}, \quad c_4 = 3.5^{+0.5}_{-0.2}
\]

Meissner et al., Machleidt
Chiral 3N interaction as density-dependent two-body interaction

antisymmetrized 3N interaction (at N^2LO) in neutron matter:

\[V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\sigma_i \cdot q_i)(\sigma_j \cdot q_j)}{(q_i^2 + m_\pi^2)(q_j^2 + m_\pi^2)} \left[-\frac{4c_1 m_\pi^2}{f_\pi^2} + \frac{2c_3}{f_\pi^2} q_i \cdot q_j \right] \]

\[V^{3N} = \text{antisymmetrized 3N interaction (at N^2LO) in neutron matter:} \]

\[C_4, C_D, \text{ and } C_E \text{ terms vanish in neutron matter} \]

\[\text{in nuclear matter all terms contribute} \]
Chiral 3N interaction as density-dependent two-body interaction

antisymmetrized 3N interaction (at N^2LO) in neutron matter:

$$V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\sigma_i \cdot q_i)(\sigma_j \cdot q_j)}{(q_i^2 + m^2_\pi)(q_j^2 + m^2_\pi)} \left[-\frac{4c_1 m^2_\pi}{f^2_\pi} + \frac{2c_3}{f^2_\pi} q_i \cdot q_j \right]$$

C_4, C_D, and C_E terms vanish in neutron matter

in nuclear matter all terms contribute

Basic idea: Sum one particle over occupied states in the Fermi sea

$$\overline{V}^{3N} = \sum_{q,\sigma} V^{3N} n(k_F - q)$$
Chiral 3N interaction as density-dependent two-body interaction

antisymmetrized 3N interaction (at N^2LO) in neutron matter:

\[V^{3N} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \sum_{i \neq j \neq k} A_{ijk} \frac{(\sigma_i \cdot q_i)(\sigma_j \cdot q_j)}{(q_i^2 + m^2_\pi)(q_j^2 + m^2_\pi)} \left[-\frac{4c_1 m^2_\pi}{f^2_\pi} + \frac{2c_3}{f^2_\pi} q_i \cdot q_j \right] \]

\[V^{3N} = \begin{array}{c}
\pi \quad \pi \\
\pi \\ \pi
\end{array} - \begin{array}{c}
\pi \\
\pi \\
\pi
\end{array} - \begin{array}{c}
\pi \\
\pi \\
\pi
\end{array} + \begin{array}{c}
\pi \\
\pi \\
\pi
\end{array} + \begin{array}{c}
\pi \\
\pi \\
\pi
\end{array}
\]

\[C_4, C_D \] and \[C_E \] terms vanish in neutron matter
in nuclear matter all terms contribute

Provides 3N corrections to free space NN interaction:
Operator form of V^{3N} in neutron matter

general momentum dependence: $\overline{V}^{3N} = \overline{V}^{3N}(\mathbf{k}, \mathbf{k}', \mathbf{P})$

P-dependence only weak, evaluate for $\mathbf{P} = 0$:

$$\overline{V}^{3N}_{P=0} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1m^2}{f^2_\pi} A(\mathbf{k}, \mathbf{k}') + \frac{2c_3}{f^2_\pi} B(\mathbf{k}, \mathbf{k}') \right]$$

$$B(\mathbf{k}, \mathbf{k}') =$$

$$-\frac{1}{3} \left\{ \frac{\rho(k, k')(k + k')^4}{((k + k')^2 + m^2_\pi)^2} + \frac{2}{3} B_1^s(k, k') - B_1^s(k, -k') - (B_2^s(k, k') + B_2^s(k', k)) \right\}$$

$$+ \frac{1}{3} (\sigma \cdot \sigma') \left\{ \frac{2}{3} \frac{\rho(k, k')(k - k')^4}{((k - k')^2 + m^2_\pi)^2} + \frac{1}{3} \frac{\rho(k, k')(k + k')^4}{((k + k')^2 + m^2_\pi)^2} \right.$

$$+ B_1^s(k, -k') - \frac{1}{3} \left[B_2^s(k, k') + B_2^s(k', k) \right] - \frac{2}{3} \left[B_2^s(k, -k') + B_2^s(k', -k) \right] \left. \right\}$$

$$+ \frac{2}{3} \left[\frac{\rho(k, k')(k + k')^2 S_{12}(k + k')}{((k + k')^2 + m^2_\pi)^2} - \frac{\rho(k, k')(k - k')^2 S_{12}(k - k')}{((k - k')^2 + m^2_\pi)^2} \right]$$

$$+ \frac{2}{3} \sigma^a \sigma^b \left[B^t_{ab}(k, k') - B^t_{ab}(k, -k') + B^t_{ab}(k', k) - B^t_{ab}(k', -k) \right]$$

$$+ \frac{1}{3} i (\sigma^a + \sigma'^a) \left[B^v_{a}(k, k') - B^v_{a}(k, -k') \right]$$
Operator form of V^{3N} in neutron matter

General momentum dependence: $V^{3N} = V^{3N}(k, k', P)$

P-dependence only weak, evaluate for $P = 0$:

$$V^{3N}_{P=0} = \frac{1}{2} \left(\frac{g_A}{2f_\pi} \right)^2 \left[-\frac{4c_1m^2}{f^2_\pi} A(k, k') + \frac{2c_3}{f^2_\pi} B(k, k') \right]$$

$B^s_1(k, k')$

$$B^s_1(k_1, k_2) = \int \frac{d^3q}{(2\pi)^3} n(q) f_R(\Lambda_{3N}, q, k_1) f_R(\Lambda_{3N}, q, k_2) \frac{((k_1 + q) \cdot (k_2 + q))^2}{((k_1 + q)^2 + m^2_\pi)((k_2 + q)^2 + m^2_\pi)}$$

- neglect P-dependence in the following, set $P=0$
- in fixed-P approximation V^{3N} matrix elements have the same form like genuine free-space NN matrix elements
- straightforward to incorporate in existing many-body schemes
Partial wave matrix elements \((\Lambda_{3N} = 2.0 \text{ fm}^{-1})\)

- non-trivial density dependence
- \(\overline{V}_{3N}(k, k'; 1\, S_0) \sim k_F^4 \sim \rho^{4/3}\)
- dominant central contributions
- non-central tensor and spin-orbit components

KH and A. Schwenk arXiv:0911.0483
Equation of state (EOS):
Many-body perturbation theory

central quantity of interest: energy per particle \(E/N \)

\[H(\Lambda) = T + V_{\text{NN}}(\Lambda) + V_{\text{3N}}(\Lambda) + \ldots . \]

- for low momentum interactions no resummation of diagrams necessary
- self-consistent single-particle propagators \(\rightarrow \) thermodynamic consistency
Neutron matter:
EOS (first order), Test of fixed-P approximation

\[E_{\text{full}}^{(1)} = V_{\text{NN}} + V_{3N} \]

\[E_{\text{eff}}^{(1)} = V_{\text{NN}} \]

relative difference of
3N contributions only \(\sim 3\% \)

P-independent effective NN interaction is a very good approximation

KH and A.Schwenk arXiv:0911.0483
Neutron matter: EOS (second order)

- reduced cutoff dependence at 2nd order
- self-energy effects small
- system is perturbative for low-momentum interactions
Neutron matter: EOS (second order)

- energy sensitive to C_3 variations
- uncertainty due to coupling constants much larger than cutoff variation

$$c_1 = -0.9^{+0.2}_{-0.5}, \quad c_3 = -4.7^{+1.5}_{-1.0}, \quad c_4 = 3.5^{+0.5}_{-0.2}$$

KH and A. Schwenk arXiv:0911.0483
Symmetric nuclear matter: First order results

\[E_{\text{full}}^{(1)} = E_{\text{NN}}^{(1)} + V^{NN} + E_{\text{3N,full}}^{(1)} \]

\[E_{\text{eff}}^{(1)} = E_{\text{NN}}^{(1)} + V \]

- P-independent effective interaction also efficient for symmetric nuclear matter
- large 3N contributions, lead to saturation at HF level
- tensor force much stronger in SNM
Symmetric nuclear matter

- 3N forces crucial for saturation
- cutoff dependence at 2nd order significantly reduced
- couplings c_D and c_E fitted to $E_{3\text{H}} = -8.482 \text{ MeV}$ and $r_{4\text{He}} = 1.95 - 1.96 \text{ fm}$
- 3rd order pp and hh contributions small

Bogner, Furnstahl, Schwenk, Nogga, KH; in preparation
Symmetric nuclear matter

Improvements:
• full treatment of double exchange terms
• self-consistent single-particle self-energies
• correction of combinatorial factors

Bogner, Furnstahl, Schwenk, Nogga; arXiv:0903.3366

\[E_{\text{NN+3N,eff}}^{(2)} \]

\[r_{4\text{He}} = 1.95 - 1.96 \text{ fm} \]
Nuclear matter: Uncertainties due to coupling constants and RG scheme

Entem/Machleidt (EM):

\[c_1 = -0.81 \text{ GeV}^{-1} \]
\[c_3 = -3.20 \text{ GeV}^{-1} \]
\[c_4 = +5.40 \text{ GeV}^{-1} \]

Rentmeester et al. (RM):

\[c_1 = -0.76 \text{ GeV}^{-1} \]
\[c_3 = -4.78 \text{ GeV}^{-1} \]
\[c_4 = +3.96 \text{ GeV}^{-1} \]

- uncertainty of about 3.5 MeV in E/A at saturation density
- reasonable saturation properties
- improved constraints of \(C_i \) couplings necessary!
Pairing gap in semi-magic nuclei

Three-body mass difference:

\[\Delta^{(3)}(N) = \frac{(-1)^N}{2} [E(N + 1) - 2E(N) + E(N - 1)] \]

repulsive 3N contributions lead to suppression of the pairing gap

Lesinski, Duguet, Schwenk, KH in preparation