Ab initio Nuclear Reactions

Team:
Petr Navratil (LOA-TRIUMF), Sofia Quaglioni

Physical and Life Sciences/Physics

Prepared by LLNL under Contract DE-AC52-07NA27344
Ab initio Reactions: NCSM/RGM

Team:
 • Sofia Quaglioni (Early career award)
 • Petr Navratiš (TRIUMF, LLNL-LOA)

LLNL effort:
 • UNEDF – Year 5:
 - Benchmark n-8He, and n-9Li scattering.
 - Investigate p-7Be scattering and capture reactions.
 - Investigate 3He-4He scattering and capture reactions.
 - Use two-, three-, and four-body transition densities for A=3,4 nuclei.
 - Development of three-body transition density calculation for A>4.
 • LDRD
 - Develop formalism for a=2,3,4 clusters in the RGM formalism
 - Code Hamiltonian and Norm kernels for a=2,3,4 clusters with NN
 - Primary goal is to get to 12C(α,γ)16O
 - Ambitious goal, will get to a=3 clusters this year
Ab initio Reactions: NCSM/RGM

- FY11 UNEDF DOE/NP budget decreased by 50%
 - Effort on ab initio reactions was decreased to zero on UNEDF
 - Due to commitment to post-doctoral employees in other efforts

- Reduction will be restored, and deliverables will be rethought

- Still operating under CR rules
 - Funding received in pro-rated amounts quarterly
 - Currently, only 42% of the reduced budget has been received
 - Affects subcontract to SDSU
Ab initio NCSM/RGM Formalism

- **Ab initio** calculations for reactions and clustering in nuclei
- Constructs integration kernels (≈ projectile-target potentials) starting from
 - NCSM wave functions
 - NN(+NNN) interactions
- Solves:
 \[
 \sum \int d\vec{r} \left[\mathcal{H}_{\mu\nu}^{(A-a,a)}(\vec{r}',\vec{r}) - E\mathcal{N}_{\mu\nu}^{(A-a,a)}(\vec{r}',\vec{r}) \right] \phi_\nu(\vec{r}) = 0
 \]

The Resonating Group Method correctly accounts for:
1) the interaction (Hamiltonian kernel) and the Pauli principle (Norm kernel) between clusters and 2) all the available channels

Ultimate Goal: \(3\alpha \rightarrow ^{12}\text{C}\) and \(^{12}\text{C}(\alpha,\gamma)^{16}\text{O}\)
Accurate evaluations and uncertainties for nuclear astrophysics and fusion diagnostic

- The elastic $n^{-3}H$ cross section for 14 MeV neutrons, important for understanding how the fuel is assembled in an implosion at NIF, was not known precisely enough.
- Nuclear theory was asked to help.
- Delivered evaluated data with required 5% uncertainty and successfully compared to measurements using an Inertial Confinement Facility.

- $T(T,2n)^4He$ also important
 - Requires 3-body cluster states

Ab initio theory reduces uncertainty due to conflicting data (\bullet, \circ, Δ, \triangle, \triangledown)

Navrátil et al., LLNL-TR-423504, LLNL-TR-435981, arXiv.1009.3965
Reactions important for solar astrophysics

- The $^7\text{Be}(p,\gamma)^8\text{B}$ is the final step in the nucleosynthetic chain leading to ^8B
- $\sim10\%$ error in latest $S_{17}(0)$: dominated by uncertainty in theoretical models
- NCSM/RGM results with largest realistic model space
 - SRG-$N^3\text{LO}$ NN potential ($\lambda = 1.86 \text{ fm}^{-1}$)
 - $N_{\text{max}} = 10$
 - $p^+^7\text{Be}(\text{g.s., } 1/2^-, 7/2^-, 5/2_1^-, 5/2_2^-)$
- Sep. energy: 136 keV (Expt. 137 keV)
- $S_{17}(0) = 19.4 \text{ eV b}$ on the lower side of, but consistent with latest evaluation
- Run time: $\sim150,000 \text{ CPU hrs}$

$^7\text{Be}(p,\gamma)^8\text{B}$ astrophysical S-factor

$$\sigma(E) = \frac{S(E)}{E} \exp\left(\frac{-2\pi Z_e^2 e^2}{h\sqrt{2mE}}\right)$$

Ab initio theory predicts simultaneously both normalization and shape of S_{17}.
Reactions important for solar astrophysics

- Remaining uncertainties
- Larger N_{max}
 - $N_{\text{max}} = 10,12$ calculations with 3 lowest 7Be eigenstates very close
 - $N_{\text{max}} = 10$ reasonable HO model space
- Higher 7Be eigenstates
 - $N_{\text{max}} = 8$ with 8 lowest 7Be eigenstates
 - Influence of $7/2^-$ could be significant
 - But: $N_{\text{max}} = 8$ is not sufficient!
 - $N_{\text{max}} = 10$, with 8 7Be eigenstates presently out of reach
- ± 0.7 eV b uncertainty on $S_{17}(0)$
- NNN force (SRG-induce + “real”) still missing

7Be($p,\gamma)^8$B astrophysical S-factor

$\sigma(E) = \frac{S(E)}{E} \exp\left(\frac{-2\pi Z_Z e^2}{\hbar \sqrt{2mE}}\right)$

Ab initio theory predicts simultaneously both normalization and shape of S_{17}.
Reactions with clusters – LDRD -> SciDAC-3

- NCSM/RGM results for $d(^{3}\text{He},p)^{4}\text{He}$
 - SRG-N^{3}LO NN potential ($\lambda = 1.5 \text{ fm}^{-1}$)
 - Approx. treatment of virtual breakup:
 Include multiple excited deuteron pseudo-states
- Data curve up and deviate from theoretical results at low energy due to laboratory electron-screening.
- Run time: $\sim 100,000 \text{ CPU hrs}$

Fundamental description still requires:
1) NNN force (SRG-induced + “real”)
2) 3-body cluster states & solution of 3-body scattering problem

$^{3}\text{He}(d,p)^{4}\text{He}$ astrophysical S-factor

\[
s(E) = \frac{S(E)}{E} \exp\left(\frac{-2nZ_{1}Z_{2}e^{2}}{h\sqrt{2mE}}\right)
\]

- $d^{3}\text{He} \rightarrow p^{4}\text{He}$

Excited d pseudo-states in both $^{3}S_{1}$-$^{3}D_{1}$ and $^{3}D_{2}$ channels

Lawrence Livermore National Laboratory
NSCM/RGM in the future

- Couple NCSM/RGM \((A-a,a)\) basis with NCSM \(A\)-body eigenstates (NCSMC)

\[
\Psi^{(A)}_{\text{NCSMC}} = \sum_{\lambda} c^{(A)}_{\lambda} \left| A \lambda J^\pi T \right> + \sum_{a,\nu} \int d\vec{r} \; \varphi^{(A-a,a)}_{\nu} (\vec{r}) \; \hat{A}^{(A-a,a)} \left| \Phi^{(A-a,a)}_{\nu} \right>
\]

- Solve:

\[
\begin{pmatrix}
H & h \\
h & \mathcal{H}
\end{pmatrix}
\begin{pmatrix}
c \\
\varphi
\end{pmatrix} =
\begin{pmatrix}
1 & g \\
g & \mathcal{N}
\end{pmatrix}
\begin{pmatrix}
c \\
\varphi
\end{pmatrix}
\]

- First step, \(A + (A-1,1)\) formalism, under development by S. Baroni & P. Navratil
- Develop the NCSMC formalism with \(a > 1\)
- Consistent treatment of bound and continuum states
- Three-body final states \(T(T,2n)^4\text{He}\)
Activities with restoration

- Benchmark n-8He, and n-9Li scattering.
- Investigate p-7Be scattering and capture reactions.
- Investigate 3He-4He scattering and capture reactions.
 - Use two-, three-, and four-body transition densities for A=3,4 nuclei.
 - Development of three-body transition density calculation for A>4.
- Include NNN interaction for n+A and p+A systems