Nuclear/Neutron Matter and Pairing in Nuclei with 3NF

Kai Hebeler
(presented by Dick Furnstahl)

Department of Physics
Ohio State University

UNEDF Collaboration Meeting
June, 2011
“Improved nuclear matter calculations from chiral low-momentum interactions”

- Evolve Λ down with RG (to $\Lambda \approx 2\text{ fm}^{-1}$ for ordinary nuclei)
 - NN interactions fully, NNN interactions approximately
- Fit two 3NF constants to triton binding and ^4He radius
 \implies predict nuclear matter

Use effective V_{3N} in MBPT

![Graph showing binding energy and radius as functions of k_F.](image)
Chiral 3NF drives saturation for low-momentum interactions

Uncertainties due to:
- RG scheme dependence ($V_{\text{low }k}$ vs. SRG)
- interaction dependence (EM vs. EGM chiral N3LO)
- c_i coupling uncertainties (long-range 2–pion 3NF)

Comparable to cutoff dependence (includes many-body)
Application to neutron matter and neutron stars

- Significantly reduced cutoff dependence at 2nd order
- Energy sensitive to long-range 3NF c_3 variations

Equation of state of pure neutron matter

$$E_{NN+3N,\text{eff}}^{(1)}$$

$$2.0 < \Lambda_{3N} < 2.5 \text{ fm}^{-1}$$

Energy/nucleon [MeV]

0 5 10 15 20

ρ [fm$^{-3}$]

0 0.05 0.10 0.15

KH and A. Schwenk PRC 82, 014314 (2010)
Application to neutron matter and neutron stars

- Significantly reduced cutoff dependence at 2nd order
- Energy sensitive to long-range 3NF c_3 variations
- Good agreement with other approaches (different NN)
Neutron star radii

Problem:
Solution of TOV equation requires EOS up to very high densities.

Radius of a typical NS (M~1.4 M⊙) theoretically not well constrained.

But:
Radius of NS is relatively insensitive to high density region.

\[\log_{10} \rho \text{ [g/cm}^3] \]

\[\log_{10} P \text{ [dyne/cm}^2] \]

\[\rho_1 \quad \rho_2 \]

\[\Gamma_1 \quad \Gamma_2 \]

\[P \text{ [10}^{33}\text{dyne/cm}^2] \]

\[\rho \text{ [} \rho_0 \text{]} \]

KH, Lattimer, Pethick, Schwenk, PRL 05, 161102 (2010)

- Significantly reduced cutoff dependence at 2nd order
- Energy sensitive to long-range 3NF \(c_3 \) variations
- Good agreement with other approaches (different NN)
- Piecewise EOS \(\rightarrow \) Constrain neutron star radius
- Also: spin-singlet and spin-triplet \((^3P_2–^3F_2) \) pairing gaps
Theoretical and experimental neutron/proton three-point mass differences along isotopic/isotonic chains

First order in chiral low-momentum NN and 3N interactions with $\Lambda/\Lambda_{3NF} = 1.8/2.0$ fm$^{-1}$

NN+3N gaps systematically lower by about 30% than NN
Chiral three-nucleon forces and pairing in nuclei

- Uncertainties: 100–200 keV for NN; 100–250 keV for 3N
- Short-range higher-order NN and 3N; long-range 3N \(c_i \)'s
- 3N needed for quantitative pairing gaps
- 1st-order low-momentum leaves 30% for higher orders

Next: normal self-energy and higher-order contributions to pairing kernel consistently based on low-momentum NN+3N

- Apply non-empirical pairing EDF to deformed nuclei
Hierarchy of many-body contributions

- Binding energy results from cancellations of much larger kinetic and potential energy contributions
- Chiral hierarchy of many-body terms preserved for considered density range
- Cutoff dependence of natural size, consistent with chiral expansion parameter $\sim 1/3$

When 3NF is fit to few-body properties, no apparent problem with 3NF growth (but 4NF probably significant)

What about consistently evolved 3NF?
When 3NF is fit to few-body properties, no apparent problem with 3NF growth (but 4NF probably significant)
Hierarchy of many-body forces at low resolution

- Binding energy results from cancellations of much larger kinetic and potential energy contributions.
- Chiral hierarchy of many-body terms preserved for considered density range.
- Cutoff dependence of natural size, consistent with chiral expansion parameter \(\sim 1/3 \).

When 3NF is fit to few-body properties, no apparent problem with 3NF growth (but 4NF probably significant).

What about consistently evolved 3NF?
“Evolving nuclear many-body forces with the SRG”

- Look at ground-state matrix elements of KE, NN, 3N, 4N

- Clear hierarchy, but also strong cancellations at NN level
- What about the A dependence?
“Evolving nuclear many-body forces with the SRG”

- Look at running of 4He and 6Li energy with λ

- Manifest induced 4NF but same whether initial 3NF or not

- What about the A dependence? No problem up to 6Li
“Similarity-transformed chiral NN+3N interactions for the ab initio description of 12-C and 16-O”

R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil, arXiv:1105.3173v1

- SRG evolved in HO basis \textit{à la} Jurgenson thesis
- Importance-truncated NCSM \implies larger N_{max}
- Here: E_{gs} vs. N_{max}
- NN-only is not unitary
- NN+3N-induced and NN+3N-full are unitary
- Induced 4NF small
“Similarity-transformed chiral NN+3N interactions for the ab initio description of 12-C and 16-O”

R. Roth, J. Langhammer, A. Calci, S. Binder, P. Navrátil, arXiv:1105.3173v1

- SRG evolved in HO basis
- Importance-truncated NCSM \Rightarrow larger N_{max}
- Here: E_{gs} vs. N_{max}
- NN-only is not unitary
- NN+3N-induced is still unitary
- NN+3N-full spreads \Rightarrow significant 4NF (confirmed by Jurgenson)
- Small spread for spectrum
Coupled cluster NN-only results: (from G. Hagen et al.)

- 16O 7.7 MeV 2.3 fm$^{-1}$
- 40Ca 8.6 MeV 2.8 fm$^{-1}$
- 48Ca 8.3 MeV 2.9 fm$^{-1}$
Coupled cluster NN-only results: (from G. Hagen et al.)

\[\begin{align*}
16_\text{O} & : 7.7 \text{ MeV} & 2.3 \text{ fm}^{-1} \\
40_{\text{Ca}} & : 8.6 \text{ MeV} & 2.8 \text{ fm}^{-1} \\
48_{\text{Ca}} & : 8.3 \text{ MeV} & 2.9 \text{ fm}^{-1}
\end{align*} \]
Coupled cluster NN-only results:
(from G. Hagen et al.)

\[
\begin{array}{ccc}
16\text{O} & 7.7\text{ MeV} & 2.3\text{ fm}^{-1} \\
40\text{Ca} & 8.6\text{ MeV} & 2.8\text{ fm}^{-1} \\
48\text{Ca} & 8.3\text{ MeV} & 2.9\text{ fm}^{-1}
\end{array}
\]
Questions under investigation in Year 5

- Impact of 3NF (including uncertainties on observables) on
 - neutron star physics
 - pairing
 - DME input for functionals
 - NCSM p-shell nuclei

- How best to fine-tune for functionals?

- RG evolutions of NN and 3NF and other operators
 - Evolved vs. fitted 3NF
 - Ranges and nature of induced interactions from evolution
 - Alternative SRG generators to control many-body operators
 - Renew project for evolving 3NF in momentum space
Options for SRG evolution of 3NF

- Transform an initial hamiltonian, $H = T + V$:

 $$H_s = U_s H U_s^{\dagger} \equiv T + V_s \quad \text{with} \quad U_s^{\dagger} U_s = U_s U_s^{\dagger} = 1$$

 where s is the flow parameter. Flow equation:

 $$\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[G_s, H_s], H_s]$$

 G_s determines flow \Longrightarrow many choices (T, H_d, H_{bd}, \ldots)

- Harmonic oscillator basis (E.D. Jurgenson et al.)
 - Evolve full H_s in $A = 3$ and subtract V_{12} evolved in $A = 2$
 - Closely tied to NCSM technology
 - Possible convergence issues; inconvenient for infinite matter

- Momentum basis (K. Hebeler [also L. Platter])
 - Separate dV_{123}/ds evolution to avoid spectator issues
 - Similar technology to solving Faddeev equations
 - Immediate matrix elements for infinite matter MBPT
 - More varied generators easier to implement
Solving SRG equations for $A=3$

- SRG flow equation $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$, e.g., $G_s = T_{\text{rel}}$
 - Insert complete sets of $A = 3$ basis states
 - A-body operators fixed in A-particle subspace

- What about spectator nucleons and their delta functions?
 - Direct solution in discrete (harmonic oscillator) basis
 - Or, decoupling of $3N$ part in momentum space

$$
\frac{dV_s}{ds} = \frac{dV_{12}}{ds} + \frac{dV_{13}}{ds} + \frac{dV_{23}}{ds} + \frac{dV_{123}}{ds} = [[T_{\text{rel}}, V_s], H_s],
$$

$$
\implies \frac{dV_{123}}{ds} = [[T_{12}, V_{12}], (T_3 + V_{13} + V_{23} + V_{123})] + \{123 \to 132\}
+ \{123 \to 231\} + [[T_{\text{rel}}, V_{123}], H_s]
$$

- No “multi-valued” two-body interactions (dependence on excitation energy of unlinked spectators)

- Tricky part: right side in 3-body Jacobi partial waves
 - need $\langle pq\alpha | V_{13} | p' q' \alpha' \rangle_{23} = \langle pq\alpha | P_{123}^{-1} V_{23} P_{123} | p' q' \alpha' \rangle_{23}$, etc.
Sample term in Jacobi partial wave basis $|pq\alpha\rangle$

\[
\begin{align*}
\langle pq\alpha | [[T_{13}, V_{13}], V_{123}] | p' q' \alpha' \rangle_{23} &= \int dq'' dq''^2 \int_{-1}^{1} dx \int_{-1}^{1} dy \left[\frac{p^2 - p_2^2(q_{(2)}^*, q'', y)}{4m} + \frac{13}{16} \frac{q^2 - q''^2}{m} \right] \frac{1}{4} \frac{q_{(2)}^2}{p|q_{(2)}^* + qx/2|} \\
&\quad \times \sum_{\bar{\alpha}} F_{\alpha \bar{\alpha}}(p, q, q'', x, y) \langle p_2^2(q_{(2)}^*, q'', y)q'' \bar{\alpha}| V_{123} | p' q' \alpha' \rangle \\
- \int dq'' dq''^2 \int_{-1}^{1} dx \int_{-1}^{1} dy \left[\frac{p_1^2(q'', q_{(1)}^*, x)}{4m} - p''^2 \right] + \frac{13}{16} \frac{q''^2 - q''^2}{m} \frac{1}{4} \frac{q_{(1)}^2}{p' |q_{(1)}^* + q'y/2|} \\
&\quad \times \sum_{\bar{\alpha}} \langle pq\alpha | V_{123} | p_1(q'', q_{(1)}^*, x)q'' \alpha_1 \rangle \tilde{F}_{\bar{\alpha} \alpha'}(p', q', q'', x, y) \\
\end{align*}
\]

with

\[
\begin{align*}
q_{(1)}^* &= \pm \sqrt{p'^2 + \frac{1}{4} q''^2 (y^2 - 1)} - \frac{1}{2} q'y, \quad p_2(q_{(1)}^*, q', y) = p' \\
q_{(2)}^* &= \pm \sqrt{p^2 + \frac{1}{4} q^2 (x^2 - 1)} - \frac{1}{2} qx, \quad p_1(q, q_{(2)}^*, x) = p \\
\end{align*}
\]

The F functions are sums of geometric factors (G coefficients as defined in Glöckle’s book) times NN matrix elements.
A = 3 Faddeev code written from scratch (NN-only so far)
 - Extend to include 3NF
Right side of SRG differential equations for V_{123} evolution
 - Expressions recently derived
 - Coded but not fully tested (uses OpenMP \Rightarrow add MPI)
 - Improve efficiency (suggestions?)
Computational issues
 - Many coupled first-order differential equations:

$$|p \ q \ \alpha\rangle \quad \Rightarrow \quad (# \ p \ points) \times (# \ q \ points) \times (\alpha \ partial \ wave \ sum)$$

with $15 \leq p \leq 40$, $10 \leq q \leq 25$, $5 \leq \alpha \leq 34$

- At each step in s, right side matrix elements each have up to 4 internal loops besides 6 external loops over $p, p', q, q', \alpha, \alpha'$
Test using Faddeev code and against 3NF HO evolution
Apply to HF (and beyond) for infinite matter
Extra slides
Diagrams for SRG \(\iff \) Disconnected cancels

\[
V_s^{(2)} = \begin{array}{c}
\times
\end{array} \quad [T, V_s^{(2)}] = \begin{array}{c}
\times
\end{array} \quad [[T, V_s^{(2)}], T] = \begin{array}{c}
\times
\end{array}
\]

\[
V_s^{(3)} = \begin{array}{c}
\times
\end{array} \quad [T, V_s^{(3)}] = \begin{array}{c}
\times
\end{array} \quad [[T, V_s^{(3)}], T] = \begin{array}{c}
\times
\end{array}
\]

\[
\frac{dV_s^{(2)}(a, b)}{ds} = a \begin{array}{c}
\times
\end{array} b + a \begin{array}{c}
\circ
\end{array} c \begin{array}{c}
\times
\end{array} b - a \begin{array}{c}
\circ
\end{array} c \begin{array}{c}
\times
\end{array} b
\]

\[
= -(\epsilon_a - \epsilon_b)^2 V_s^{(2)}(a, b) + \sum_c [(\epsilon_a - \epsilon_c) - (\epsilon_c - \epsilon_b)] V_s^{(2)}(a, c) V_s^{(2)}(c, b)
\]

\[
\frac{dV_s^{(3)}}{ds} = \begin{array}{c}
\times
\end{array} + \begin{array}{c}
\circ
\end{array} \begin{array}{c}
\times
\end{array} + \begin{array}{c}
\circ
\end{array} \begin{array}{c}
\times
\end{array} + \begin{array}{c}
\circ
\end{array} \begin{array}{c}
\times
\end{array} + \cdots
\]
V_3 analysis in $A = 3$

$$
\frac{d}{d\lambda} \langle \psi_\lambda^{(3)} | V_3 | \psi_\lambda^{(3)} \rangle = \langle \psi_\lambda^{(3)} | [\bar{V}_2, V_2]_c - [\bar{V}_3, V_3] | \psi_\lambda^{(3)} \rangle
$$

- Majority evolution dominated by $[\bar{V}_2, V_2]$, $(\bar{V} \equiv [T, V])$
- Hierarchy of contributions

- $\hbar \Omega = 20$ MeV
- $N_{A3\text{max}} = 32$

Ground-State Energy [MeV]

<table>
<thead>
<tr>
<th>λ [fm$^{-1}$]</th>
<th>NN-only</th>
<th>NN + NNN-induced</th>
<th>NN + NNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>2</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>3</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>4</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>5</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>10</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
<tr>
<td>20</td>
<td>7.8</td>
<td>8.2</td>
<td>8.6</td>
</tr>
</tbody>
</table>

g.s. Expectation Value

<table>
<thead>
<tr>
<th>λ [fm$^{-1}$]</th>
<th>d$<V_3>/d\lambda$</th>
<th>$<[[T,V_2],V_2]>_c$</th>
<th>$<[[T,V_3],V_3]>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>1.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
</tbody>
</table>

λ [fm$^{-1}$]
V_4 analysis in $A = 4$

$$\frac{d}{d\lambda} \langle \psi^{(4)}_\lambda | V_4 | \psi^{(4)}_\lambda \rangle = \langle \psi^{(4)}_\lambda | [\bar{V}_2, V_3]_c + [\bar{V}_3, V_2]_c + [\bar{V}_3, V_3]_c - [\bar{V}_3, V_4] | \psi^{(4)}_\lambda \rangle$$

- No $[\bar{V}_2, V_2] \implies$ Induced 4-body is relatively suppressed
- Initial hierarchy of few-body forces is maintained (?)