Data to Constrain EDF
Witold Nazarewicz (Tennessee)
UNEDF Annual Meeting, Pack Forest, WA, June 2008

Technology to calculate observables
• Global properties
• Spectroscopy
DFT Solvers
Functional form
Functional optimization
Estimation of theoretical errors

...with Nicolas Schunck
DFT-UNEDF Workshop

Determination of the Nuclear Energy functional: Optimization Strategy, Essential Experimental Data and Chi-Squared Metrics

Joint Institute for Heavy Ion Research, ORNL, Oak Ridge, TN-37831, USA January 22, 2008

Talks

<table>
<thead>
<tr>
<th>Name</th>
<th>Title of Contribution</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Brown</td>
<td>Strategies for Extracting Optimal Effective Hamiltonians for CI and Skyrme EDF Applications</td>
<td>Brown.ppt</td>
</tr>
<tr>
<td>J. Dobaczewski</td>
<td>Spectroscopic-Quality Energy Density Functional and How to Get There</td>
<td>Dobaczewski.ppt</td>
</tr>
</tbody>
</table>

Choice of Experimental Observables

<table>
<thead>
<tr>
<th>Name</th>
<th>Title of Contribution</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Afanasjevs</td>
<td>Terminating States: Can They Be Used to Constrain DFT?</td>
<td>Afanasjevs.pdf</td>
</tr>
<tr>
<td>G. Colo</td>
<td>Constraints from Collective States</td>
<td>Colo.ppt</td>
</tr>
<tr>
<td>P. Kluepfel</td>
<td>Best Mean-Field Nuclei for Fits</td>
<td>Kluepfel_1.pdf</td>
</tr>
<tr>
<td>P. Kluepfel</td>
<td>Fitting Strategies</td>
<td>Kluepfel_2.pdf</td>
</tr>
<tr>
<td>H. Sagawa</td>
<td>Constraints to Universal Energy Density Functionals by Giant Resonances</td>
<td>Sagawa.ppt</td>
</tr>
<tr>
<td>N. Schunck</td>
<td>Large Deformations in DFT Fits</td>
<td>Schunck_1.ppt</td>
</tr>
<tr>
<td>N. Schunck</td>
<td>Quasi-particle Spectra in DFT Fits</td>
<td>Schunck_2.ppt</td>
</tr>
<tr>
<td>J. Terasaki</td>
<td>QRPA Calculation in Fitting Process of Functional</td>
<td>Terasaki.ppt</td>
</tr>
<tr>
<td>J. Vary</td>
<td>Ab-initio calculations with an external field - initial results</td>
<td>Vary.ppt</td>
</tr>
</tbody>
</table>

Minimization and Algorithms

<table>
<thead>
<tr>
<th>Name</th>
<th>Title of Contribution</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Moré (1)</td>
<td>Validation of Models</td>
<td>More_1.pdf</td>
</tr>
<tr>
<td>J. Moré (2)</td>
<td>Parameter Estimation in Nuclear Fission</td>
<td>More_2.pdf</td>
</tr>
<tr>
<td>T. Lesinski</td>
<td>Minimization Algorithms for Local and Global Minima Search</td>
<td>Lesinski.pdf</td>
</tr>
</tbody>
</table>

http://orph02.phy.ornl.gov/workshops/lacm08/unedf.html
Participants

1. A. Afanasjev
2. K. Bennaceur
3. C. Bertulani
4. A. Brown
5. G. Colo
6. D. Dean
7. J. Dobaczewski
8. Y. Enyo
9. P. Fallon
10. R. Furnstahl
11. B. Gebremariam
12. P.-H. Heenen
13. T. Kawano
14. A. Kerman
15. P. Kluepfel
16. N. Itagaki
17. M. Ito
18. T. Lesinski
19. M. Matsuo
20. K. Matsuyanagi
21. P. Möller
22. J. Moré
23. N. Michel
24. N. Nikolov
25. T. Nakatsukasa
26. H. A. Nam
27. W. Nazarewicz
28. T. Otsuka
29. J. Pei
30. M. Ploszajczak
31. H. Sagawa
32. J. Sarich
33. N. Schunck
34. S. Shlomo
35. M. Stoitsov
36. J. Terasaki
37. I. Thompson
38. T. Uesaka
39. U. Utsuno
40. J. Vary
41. E. Vigezzi
The aim of the January meeting at ORNL was to prepare the development of the next generation of functionals by discussing various aspects pertaining to the optimization of the EDF. In particular, we addressed the questions:

• What essential experimental data should be taken into account for the EDF optimization?
• What optimization techniques should be used?

• Importance of pseudo data (e.g., INM properties)
• Stability conditions
• Static and dynamic properties
• Choice of weights in χ^2
• Minimization algorithms
• Optimization validation
• Error estimation and error propagation
Example: The Matrix – SkP case

<table>
<thead>
<tr>
<th>Skyrme binding energy, saturation density, incompressibility, enhancement factor, isospin symmetry energy at ρ_0 and $\rho_0/2$; (6 parameters)</th>
<th>Effective Mass</th>
<th>Skyrme surface energy</th>
<th>Spin-orbit strength W_0</th>
<th>Average pairing matrix element</th>
</tr>
</thead>
<tbody>
<tr>
<td>NM binding energy saturation density incompressibility, enhancement factor, isospin symmetry energy at ρ_0 and $\rho_0/2$; (6 “observables”)</td>
<td>×</td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binding energies of ^{16}O and ^{208}Pb</td>
<td></td>
<td>×</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binding energies of $^{120-132}\text{Sn}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average pairing gap</td>
<td></td>
<td></td>
<td></td>
<td>×</td>
</tr>
</tbody>
</table>
P. Klüpfel (with P.G. Reinhard)

Fitting strategies

Bulk observables of finite nuclei
- E_b binding energies
- r, R radii
- σ surface

Free χ^2-fit

Infinite matter
- $a_{\text{sym}}, K_\infty, m^*/m, \kappa$
- Nuclear matter properties (NMP)

Big extrapolation errors for NMP
- (correlations between NMP)

χ^2-fit with constrained NMP

Additional observables
- A posteriori computation of level splittings, giant resonances, SHE, ...

Optimal choice of NMP
Outcome

DFT-UNEDF Working Group

Determination of the Nuclear Energy functional:
Database of Experimental Data and Related Software

Introduction Experimental Data Table Software Credits and Documentation

http://orph02.phy.ornl.gov/workshops/lacm08/UNEDF/database.html

A website containing the tabulated experimental data that could be used to fit the nuclear EDF and to compare various EDF parametrizations

- Peter Kluepfel (masses and radii of spherical nuclei)
- Gianluca Colo (giant monopole and dipole resonance)
- Jun Terasaki (2+ states and B(E2) values)
- Mario Stoitsov (axially-deformed nuclei deformations and Vpn)
- Ludovic Bonneau (odd-mass spins and parity)
- Wojtek Satula (terminating states)

Last Modification: June, 18, 2008

This page is maintained by N. Schunck, in collaboration with J. Dobaczewski and W. Nazarewicz
Experimental Data Table

Spherical Nuclei

- Masses, r.m.s. radii, diffraction radii and surface thickness
- Giant monopole and dipole resonance in 90Zr, 116Sn and 208Pb
- Experimental energy of the first 2+ state and B(E2) value in Ca, Ni, Sn and Pb isotopes

Axially-deformed Nuclei

- Binding energy of well-deformed even-even nuclei. Candidates were selected from a HFB mass-table calculation by M. Stoitsov with the SLy4 interaction according to 2 criteria
 1. The ground-state equilibrium deformation is greater than 0.25
 2. The experimental mass of the nucleus is known
- Super-deformed bandheads and fission isomers
- $V_{pn}(Z,N) = 0.5 \times [B(Z,N) - B(Z,N-2) - B(Z-2,N) + B(Z-2,N-2)]$, see M. Stoitsov, R. B. Cakirli, R. F. Casten, W. Nazarewicz and W. Satula, Phys. Rev. Lett. 98, 132502 (2007)

Symmetry-unrestricted

- Ground-state spin and parity for odd-mass nuclei (odd-even, even-odd and odd-odd)
- High-K terminating states in f-p shell nuclei
- 1q.p. excited states of odd-mass heaviest elements
We supply the database itself in the form of an Ascii file, as well as the necessary Fortran 77 and Fortran 90 subroutines to read the files. Each of the modules can be used "as is" in existing programs.

<table>
<thead>
<tr>
<th>File</th>
<th>Fortran 77</th>
<th>Fortran 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program</td>
<td>main.f</td>
<td>main.f90</td>
</tr>
<tr>
<td>Input/Output Module</td>
<td>input.f</td>
<td>input.f90</td>
</tr>
</tbody>
</table>

The entire package (fortran source and file) is also available below in the form of zip archive (unzip *.zip to decompress):

- Fortran 77: ExpDataTablePackage_F77.zip
- Fortran 90: ExpDataTablePackage_F90.zip

The programs supplied here open the data file, read all records and fill out a number of arrays with the data that are read. All the relevant arrays are listed below, together with a short description for each of them. This list can also be found in the form of comments in each source file. In Fortran 77, we use implicit declaration of variables (variables whose name starts by I-N are integers by default, others are real by default). In Fortran 90 the Implicit None instruction is used throughout and each variable is properly declared. The Fortran 90 code is also explicitly modular for better insertion into other codes.
Spherical States

<table>
<thead>
<tr>
<th>Z</th>
<th>N</th>
<th>E (MeV)</th>
<th>DeltaE (MeV)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>160</td>
<td>-1955.59595</td>
<td>0.53600</td>
<td>0.35506</td>
</tr>
<tr>
<td>108</td>
<td>162</td>
<td>-1969.38000</td>
<td>0.27000</td>
<td>0.34422</td>
</tr>
<tr>
<td>108</td>
<td>164</td>
<td>-1981.24805</td>
<td>0.54400</td>
<td>0.33152</td>
</tr>
<tr>
<td>108</td>
<td>166</td>
<td>-1993.62402</td>
<td>0.54799</td>
<td>0.31692</td>
</tr>
</tbody>
</table>

Deformed States

Super-deformed States

ODDNUCLE

<table>
<thead>
<tr>
<th>Z</th>
<th>N</th>
<th>Spin</th>
<th>Parity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>1.5</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>0.5</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.5</td>
<td>-1</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0.5</td>
<td>-1</td>
</tr>
</tbody>
</table>
Recent Work

Variations on a theme by Skyrme
P. Klüpfel, P. -G. Reinhard, T.J. Bürvenich and J. A. Maruhn

Error analysis of nuclear mass fits
J. Toivanen, J. Dobaczewski, M. Kortelainen and K. Mizuyama
arXiv:0806.1914 (June 2008)