Progress Report on Calculating Accurate Nuclear Level Densities Using Spin Projected Moments Method

Mihai Horoi
Department of Physics,
Central Michigan University,
Mount Pleasant, Michigan 48859, USA
Nuclear Level Densities (NLD)

Hauser and Feshbach, Phys. Rev 87, 366 (1952),

\[T(E,J,\pi) = \int_{E_{\text{min}}}^{E_{\text{max}}} T(E,J,\pi;E_x,J_x,\pi_x) \rho(E_x,J_x,\pi_x) dE_x \]

- See Erich Ormand’s talk

\[\rho(E_x,J,\pi) = \frac{1}{2} \mathcal{F}(U,J) \rho_{\text{FG}}(U) \]

\[U = E_x - \Delta \]

Equal contribution to both parities

Remedy by Alhassid, Bertsch, Liu,
Nakada, PRL 84, 4313 (2000) + Basel group (Rauscher)

\[\text{HF+BCS} \rightarrow \rho_{\text{HF+BCS}}(U) \]

Accurate Nuclear Level Densities

Comparison of:
1. CI,
2. HF+BCS
 www-astro.ulb.ac.be/Html/nld.html
3. experimental data

Complete spectroscopy: sd-shell nuclei

Conclusions:
- HF+BCS overestimates the data
- CI accurately describes the data
NLD and Statistical Spectroscopy

M. Horoi et al.:
PRC 67, 054309 (2003),
PRC 69, 041307(R) (2004),
NPA 785, 142 (2005).

PRL 98, 265503 (2007)

Configurations: e.g. 4 particles in sd
d3 d5 s1
4 0 0
3 1 0
3 0 1 ...

preserve rotational invariance
and parity

\[\rho(E_x, J, \pi) = \sum_{c \in \text{conf}} D_c(J, \pi) G_{FR}(E, E_c(J), \sigma_c(J)) \]

\[E_c(J), \sigma_c(J) \leftarrow \text{Tr}_{SD_c} < M \mid H^q \mid M >_{SD_c} \]

\[E_x = E - E_{\text{g.s.}} \]

\[E_c(J), \sigma_c(J): \text{computational intensive} \]

Configurations can be calculated in parallel

Conclusion:
- Moments method NLD reproduces very well the CI NLD

\(^{28}\text{Si} \ \pi = + \) staircase: CI, USD

E_g.s. from CI, PCI, Exponential Convergence Method (PRL 82, 2064 (1999)), CC, etc.
NLD Comparison: CI, Moments, HF+BCS
NuShellX: coupled-J code

Can calculate a large number of non-yrast states: ideal for level density

- Hardware: 3.2 GHz, dual-quad Intel, 16 GB RAM, 700 GB SATA II HD
- Maximum 8 threads
- **HPC equivalent**: computes five J=0 states in 56Ni (m-scheme dim = 10^9) in 4 hours !!!

![Graph](image)
NLD of ^{56}Fe: CI, Moments, HF+BCS

Ohio data: PRC 74, 014314 (2006)
Ratio of unnatural to natural NLD of different parities at low energies

\[\rho(E_x, J, \pi) = \frac{1}{2} \mathcal{F}(U, J) \rho_{FG}(U) \]

\[U = E_x - \Delta \]

Equal contribution to both parities

Configurations: e.g. 4 particles in fpg

- f5 p3 p1 g9 \pi
- 4 0 0 0 +
- 3 1 0 0 +
- 3 0 1 0 +
- 3 0 0 1 -

... preserve rotational invariance and parity
NLD for the rp-process

the rp-process path

^{68}Se
^{64}Ge

$^{65}\text{Ge}, J=9/2$

$^{65}\text{Ge}, J=1/2$

$Ioroi CM^1$
Publications

Presentations

Status of the NLD Project

Moments Code for NLD:
- Serial Code: finalized
- Parallel Code: in progress
- HPC resources: up to 100,000 CPU-hour

NuShellX CI Code (W. Rae):
- Serial Code: finalized, adapted to Unix environment
- Parallel Code: OpenMP - proved to scale to 32 threads, depending on J
- HPC resources: up to 100,000 thread-hour
Plan for the rest of Year 2

- Finish the parallelization of the Moments code
- Calculate nuclear level densities around the “waiting-point nucleus” ^{68}Se

Plan for Year 3

- Calculate the nuclear level densities for most of the nuclei in the rp-process path
- Provide input to HF code (LLNL) to calculate reaction rates
- Investigate algorithm efficiency
- HPC resources needed: up to 300,000 thread-hour

Pack Forest
June 25, 2008
M. Horoi CMU
- Investigate level densities for the r-process path. Calculate the relevant reaction rates.

- Improve the efficiency of the algorithm to scale to over 1,000 cores

- Restrict the class of intermediate configuration for second moments $\sigma_c(J)$; useful for removal of center-of-mass spurious components (PRL 98, 265503 (2007))
NLD and Statistical Spectroscopy

M. Horoi et al.:
PRC 67, 054309 (2003),
PRC 69, 041307(R) (2004),
NPA 785, 142 (2005).
PRL 98, 265503 (2007)

\[\rho(E_x,J,\pi) = \sum_{p \in \text{conf}} D_p(J,\pi) G_{FR}(E, E_p(J), \sigma_p(J)) \]

\[E_p(J), \sigma_p(J) \leftarrow \text{Tr}_{SD} < M \mid H^q \mid M >_{SD} \]

\[E_x = E - E_{g.s.} \]

\(E_{g.s.} \) from CI, PCI, Exponential Convergence Method (ECM), PRL 82, 2064 (1999), etc.

Pack Forest
June 25, 2008
Fixed spin and parity nuclear level density for restricted shell model configurations

Mihai Horoi,† Monica Ghita,† and Vladimir Zelevinsky†‡
1Physics Department, Central Michigan University, Mount Pleasant, Michigan 48859, USA
2National Superconducting Cyclotron Laboratory, East Lansing, Michigan 48824, USA
3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
(Received 14 January 2004; published 30 April 2004)

\[\langle\langle H \rangle\rangle m_{nM}T_z = \sum_i \epsilon_i D^i(m_{nM}T_z) + \sum_{i<j} V_{ij ij} D^{ij}(m_{nM}T_z) \]

\[\langle\langle H^2 \rangle\rangle m_{nM}T_z = \sum_i \epsilon_i^2 D^i(m_{nM}T_z) + \sum_{i<j} \left[2\epsilon_i \epsilon_j + 2(\epsilon_i + \epsilon_j)V_{ij ij} + \sum_{k<l} V_{ijkl}^2 \right] D^{ij}(m_{nM}T_z) + \sum_{(i<j)\neq l} \left[(2V_{iikk}V_{jj kj} - V_{i jkl}^2) + 2\epsilon_i \epsilon_j V_{ij ij} \right] D^{ij l}(m_{nM}T_z) + \sum_{(i<j)\neq (k<l)} \left[V_{ij kl}^2 + V_{ij ij} V_{kl kl} - 4V_{ki ij} V_{kj kl} \right] D^{ij kl}(m_{nM}T_z) \]

\[E_{\tilde{m}}(J) = \langle\langle H \rangle\rangle m_{nM}JT_z = \left(\langle\langle H \rangle\rangle m_{nM} = JT_z - \langle\langle H \rangle\rangle m_{nM} = (J+1)T_z \right) / D(m_{nM}JT_z) \]

\[\langle H^2 \rangle m_{nM}JT_z = \left(\langle\langle H^2 \rangle\rangle m_{nM} = JT_z - \langle\langle H^2 \rangle\rangle m_{nM} = (J+1)T_z \right) / D(m_{nM}JT_z) \]

\[\sigma_{\tilde{m}JT_z} = \sqrt{\langle H^2 \rangle m_{nM}JT_z - \langle H \rangle^2 m_{nM}JT_z} \]

\[m \] is the number of particles
\[D^i(m_{nM}T_z) \] is the number of determinants in a partition \(\tilde{m} \) with \(nMT_z \) and state \(i \) occupied,
Removal of Spurious Center-of-Mass Excitations

\(\rho(E, J, 0+2) \): total density in a model space including all 0+2 h.o. excitations

\(\rho_{\text{nsp}}(E, J, 0+2) \): center-of-mass excitations removed

\[
\rho_{\text{nsp}}(E,J = 2, 0 + 2) =
\rho(E,2,0 + 2) - \sum_{J_k = 0}^{2} \sum_{J' = |2 - J_k|}^{2+J_k} \rho_{\text{nsp}}(E,J',0) - \sum_{J' = 1}^{3} \rho_{\text{nsp}}(E,J',1)
\]

\(^{10}\text{B} \): 10 particles in \(s-p-sd-pf \) shell model space

Horoi and Zelevinsky, PRL 98, 265503 (2007)