Ab initio many-body calculations of nucleon-nucleus scattering

Petr Navratil and Sofia Quaglioni
UNEDF SCIDAC meeting, Pack Forest, WA, 6/26/2008
Ab initio approach to light-ion reactions

- Combining the ab initio no-core shell model (NCSM) with the resonating group method (RGM)

 \[\Rightarrow \text{ab initio NCSM/RGM} \]

 - NCSM - single-particle degrees of freedom
 - RGM - clusters and their relative motion

\[H \Psi^{(A)} = E \Psi^{(A)} \sum_v \int d\vec{r} \left[H^{(A-a,a)}_{\mu \nu}(\vec{r}', \vec{r}) - E N^{(A-a,a)}_{\mu \nu}(\vec{r}', \vec{r}) \right] \Phi_v(\vec{r}) = 0 \]

- Non-local integro-differential coupled-channel equations:

 \[[T_c + \tilde{V}_C(r) - (E - \varepsilon_c)]u_c(r) + \sum_{c'} \int dr' r'^2 W_{cc'}(r, r') u_{c'}(r') = 0 \]

Fully implemented and tested for the case of a single-nucleon projectile (nucleon-nucleus system). Capability to calculate bound states, scattering matrix, phase shifts, cross sections.
Single-nucleon projectile: the norm kernel

\[\mathcal{N}_{\mu \ell', \nu \ell}^{(A-1,1)}(r', r) = \delta_{\mu \nu} \delta_{\ell \ell'} \frac{\delta(r' - r)}{r' r} - (A - 1) \sum_{n'n} R_{n'n'}(r') \langle \Phi_{\mu \ell' n' \ell'}^{(A-1,1)JT} | P_{A,A-1} | \Phi_{\nu n \ell}^{(A-1,1)JT} \rangle R_{n \ell}(r) \]

\[- (A-1) \times \langle \psi_{\mu_1}^{(A-1)} | a^+ a | \psi_{\nu_1}^{(A-1)} \rangle_{SD} \]
Single-nucleon projectile basis: the Hamiltonian kernel

\[\langle (1, \ldots, A-1) \mid H \left(1 - \sum_{j=1}^{A-1} P_{jA} \right) \mid (1, \ldots, A-1) \rangle \]

\[H_{\mu \ell', \nu \ell}^{(A-1, 1)}(r', r) = (E_{A-1} + T_{\text{rel}}) \mathcal{N}_{\mu \ell', \nu \ell}^{(A-1, 1)}(r', r) \]

\[+ (A - 1) \sum_{n'n} R_{n'\ell'}(r') \langle \Phi_{\mu n' \ell'}^{(A-1, 1)JT} | V_{A-1,A} (1 - P_{A-1,A}) | \Phi_{\nu n \ell}^{(A-1,1)JT} \rangle R_{n\ell}(r) \]

\[- (A - 1)(A - 2) \sum_{n'n} R_{n'\ell'}(r') \langle \Phi_{\mu n' \ell'}^{(A-1,1)JT} | V_{A-2,A} P_{A,A-1} | \Phi_{\nu n \ell}^{(A-1,1)JT} \rangle R_{n\ell}(r) \]

\[+ \text{ terms containing NNN potential} \]

SD \[\langle \psi^{(A-1)}_{\mu_1} \mid a^+ a \psi^{(A-1)}_{\nu_1} \rangle \]

SD \[\langle \psi^{(A-1)}_{\mu_1} \mid a^+ a a \psi^{(A-1)}_{\nu_1} \rangle \]

\((A-1) \times \{ \ldots \} \]

\((A-1)(A-2) \times \{ \ldots \} \]

"direct potential" "exchange potential"
\(n^{-4}\text{He} \) phase shifts with mSSC V8’ NN interaction

- NCSM/RGM calculation:
 - mSSC V8’ NN potential
 - two-body effective interaction
 \(N_{max} = 17 @ \hbar \Omega = 22 \text{ MeV} \)
 - Dotted lines \(N_{max} = 15 \)
 - \(^4\text{He} \) states: g.s. + 0\(^+\)0
- \(p^+4\text{He} \) calculated as well

24.25	1\(^-\)0
23.64	1\(^-\)1
23.33	2\(^-\)1
21.84	2\(^-\)0
21.01	0\(^+\)0
20.21	0\(^+\)0

Done with the NN potential used for UNEDF benchmarks. Other resonances still should be included: 0\(^-\) 0, 1\(^-\) 0, 2\(^-\) 0. To be compared to GFMC calculations.
Parity-inverted ground state of ^{11}Be

- ^{11}Be
 - Disappearance of $N=8$ magic number with increasing N/Z ratio
 - Ground state $1/2^+$ instead of the p-shell expected $1/2^-$

- Large-scale *ab initio* NCSM calculations with several accurate NN potentials do not explain the parity inversion
 - PRC 71, 043312 (2005)

- Problem:
 - Extended $n+^{10}\text{Be}$ configurations suppressed
n-\(^{10}\)Be phase shifts with CD-Bonn NN interaction

- NCSM/RGM calculation:
 - CD-Bonn 2000 NN potential
 - two-body effective interaction
 \(N_{\text{max}} = 7 \ @ \ \hbar \Omega = 13 \ \text{MeV}\)
 - \(^{10}\)Be states:
 - g.s., \(2_1^+, 2_2^+, 1_1^+\)
 - g.s., \(2_1^+, 2_2^+\)
 - g.s., \(2_1^+\)
 - g.s.

- Dramatic increase of \(^{11}\)Be 1/2\(^+\) binding energy
- Inversion between 1/2\(^-\) and 1/2\(^+\) states reproduced
\textit{n-}^{10}\text{Be} \& \text{parity-inverted ground state of} \; ^{11}\text{Be}

- What happens?
 - \textit{n-}^{10}\text{Be} \text{ wave function extends to large distances}
 - Relative kinetic and potential energies decrease in absolute values
 - The kinetic energy more dramatically
 - Net effect: \textbf{Gain in binding energy}

\begin{tabular}{|l|c|c|c|c|}
\hline
\text{NCSM} / \text{RGM} & \text{T}_{\text{rel}} & \text{V}_{\text{rel}} & \text{E}_{10\text{Be}} & \text{E}_{\text{tot}} \\
\hline
\text{Model-space} & 16.65 & -15.02 & -56.66 & -55.03 \\
\hline
\text{Full} & 6.56 & -7.39 & -57.02 & -57.85 \\
\hline
\end{tabular}

The proper description of extended \textit{n-}^{10}\text{Be} \text{ configurations leads to parity-inverted} \; ^{11}\text{Be} \text{ g.s.}
$n^{-12}\text{C}$ scattering with mSSC V8’ NN interaction

- NCSM ^{12}C benchmark calculation: $E_{gs} = -86(2)$ MeV
- NCSM ^{13}C calculation:
 - $1/2^+, 5/2^+$ states too high, unbound
- NCSM/RGM ^{13}C calculation:
 - two-body effective interaction
 - $N_{max} = 7 @ h \Omega = 14$ MeV
 - ^{12}C states: g.s., 2^+_1
 - $1/2^+$ state bound
 - $1/2^-, 3/2^-$ and $5/2^+$ bound

<table>
<thead>
<tr>
<th></th>
<th>^{12}C</th>
<th>^{13}C: $^1 \frac{1}{2}^-$</th>
<th>$^3 \frac{2}{2}^-$</th>
<th>$^1 \frac{3}{2}^+$</th>
<th>$^3 \frac{5}{2}^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{gs} (MeV)</td>
<td>-86</td>
<td>-101.18</td>
<td>-8.59</td>
<td>-7.11</td>
<td>0.08</td>
</tr>
<tr>
<td>E_{th} (MeV)</td>
<td>-92.59</td>
<td>-7.13</td>
<td>-5.35</td>
<td>-2.85</td>
<td>-0.62</td>
</tr>
</tbody>
</table>

Expt.

- NCSM $6h \Omega / 7h \Omega$
- NCSM/RGM
- Expt.
\(n^{12}\text{C} \) scattering with mSSC V8’ NN interaction

- NCSM/RGM \(n^{+12}\text{C} \) total cross section dominated by \(d \)-wave resonances:
 - 5/2\(^+\), 3/2\(^+\) states in \(^{13}\text{C} \)
 - 1/2\(^-\), 3/2\(^-\), 1/2\(^+\) and 5/2\(^+\) states bound
 - 5/2\(^+\), 3/2\(^+\) and 5/2\(^-\) narrow resonances
 - 3/2\(^+\) broad resonance

- Scattering calculation a much stricter test of NN (+NNN) interactions than the discrete state calculation alone
\(-^{16}\text{O} \text{ scattering with SRG-N}^3\text{LO NN potential}\)

- \(^{16}\text{O} \) ground state calculated within importance-truncated NCSM
 - in collaboration with R. Roth (TU Darmstadt)
 - 4p-4h up to \(N_{\text{max}}=14\) (\(N_{\text{max}}=18\) possible!?), \(h\Omega=20\) MeV
 - SRG-N\(^3\)LO with \(\Lambda=2.66\) fm\(^{-1}\)
 - Less overbinding
 - Benchmarking with full NCSM
 - \(^{16}\text{O} \) binding energy up to \(N_{\text{max}}=8\)
 - Perfect agreement

- \(^{17}\text{O} \) within \textit{ab initio} NCSM/RGM
 - \(1/2^+\) bound: \(E_b=-0.87\) MeV wrt \(^{16}\text{O}\)
 - \(5/2^+\) bound: \(E_b=-0.40\) MeV wrt \(^{16}\text{O}\)
 - \(N_{\text{max}}=15\), \(h\Omega=20\) MeV
 - Only \(^{16}\text{O} \) ground-state included

\[2p-2h\]
\[4p-4h\]
\[4p-4h + Davidson\]
$n^{-16}\text{O}$ scattering with SRG-$N^3\text{LO}$ NN potential

- Phase-shift convergence reasonable
- Essential to use large N_{max}
 - Target wave function
 - Expansion of short-range parts of kernels
 - IT NCSM for the target makes it possible
- Need to include ^{16}O excited states (1p-1h...)
 - IT NCSM for excited states under way

Combining the ab initio NCSM/RGM with the importance-truncated NCSM highly promising. Access to medium mass nuclei.

$N_{\text{max}} = 14$
$n^{-16}\text{O}$ scattering with SRG-N3LO NN potential

- Orthogonalized NCSM/RGM equations:
 - Non-local nucleon-nucleus potential
 - Channel dependent
 - Wave functions

Direct connection to phenomenological reaction theory: Comparison of coupling potentials, wave functions
Computational issues

- The most computationally intensive:
 - NCSM/RGM with the target wave function expanded in Slater determinant basis ($A>3$)
 - Target wave functions calculations
 - Limit: Dimensions up to 10^8
 - Antoine
 - Codes developed from “Arizona” version of the MFD; MPI; up to 512 processors
 - One- and two-body transition densities from the target wave functions
 - TRDENS; MPI; up to 512 processors
 - Memory intensive: many combinations of operators in multi-shell HO basis (especially for eigenstates with $J>0$)
 - The kernel calculations from the densities is less challenging
 - NCSM/RGM with the target wave function expanded in Jacobi basis ($A=3-5$)
 - The kernel calculations
 - Sofia’s code; MPI; up to 256 processors

- CS assistance sought for the TRDENS development and optimization
Past year publications citing UNEDF

Ab Initio Study of 40Ca with an Importance-Truncated No-Core Shell Model

R. Roth
Institut für Kernphysik, TU Darmstadt, Schloßgartenstr. 9, 64289 Darmstadt, Germany

P. Navrátil
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
(Received 27 May 2007; published 29 August 2007)

We propose an importance truncation scheme for no-core shell model or configuration interaction approaches, which enables converged calculations for nuclei well beyond the p shell. It is based on an apriori measure for the importance of individual basis states constructed by means of many-body perturbation theory. Only the physically relevant states of the no-core model space are considered, which leads to a dramatic reduction of the basis dimension. We analyze the validity and efficiency of this truncation scheme using different realistic nuclear-nucleon interactions and compare to conventional no-core shell model calculations for 4He and 40Ca. Then, we present first converged calculations for the ground state of 40Ca within no-core model spaces including up to $16\hbar^2$ excitations using realistic low-momentum interactions. The scheme is universal and can be easily applied to other quantum many-body problems.

Nuclear Electric Dipole Moment of 3He

I. Stetcu a, C.-P. Liu a,b,c, J. L. Friar a, A. C. Hayes a, P. Navrátil d

a Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.
b Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
c Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A.
d Lawrence Livermore National Laboratory, P.O. Box 808, L-414, CA 94551, USA.

arXiv:0804.3815; accepted in PLB

Local three-nucleon interaction from chiral effective field theory

P. Navrátil
Lawrence Livermore National Laboratory, Livermore, CA, USA

Received 3 August 2007; Accepted 18 October 2007; Published online 30 November 2007 © Springer-Verlag 2007

Abstract The three-nucleon (NNN) interaction derived within the chiral effective field theory at the next-to-next-to-leading order (N3LO) is regulated with a function depending on the magnitude of the momentum transfer. The regulated NNN interaction is then local in the coordinate space, which is advantageous for some many-body techniques. Matrix elements of the local chiral NNN interaction are evaluated in a three-nucleon basis. Using the ab initio no-core shell model (NCSM) the NNN matrix elements are employed in 3H and 4He bound-state calculations.

Ab Initio Many-Body Calculations of $n-^3$H, $n-^4$He, $p-^3$He, and $n-^{10}$Be Scattering

Sofia Quaglioni and Petr Navrátil
Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, CA 94551, USA
(Dated: April 9, 2008)

arXiv:0804.1560; submitted to PRL
Past year accomplishments and future plans

- Benchmark calculations for ^7Li, ^9Be and ^{12}C with mSSC V8’ NN potential
- Development of \textit{ab initio} many-body reaction theory by merging the NCSM and the RGM
 - Results with NN potentials used by UNEDF collaboration
 - $n^{-4}\text{He}$ ($p^{-4}\text{He}$) with SRG-N^3LO, SRC-AV18, mSSC V8’
 - $n^{-12}\text{C}$ with mSSC V8’
 - $n^{-16}\text{O}$ with SRG-N^3LO using the importance-truncated NCSM
 - Calculation of nucleon-nucleus non-local potentials
 - Bottleneck: Target wave-function and two-body density calc.
- ^{40}Ca with 4p-4h IT NCSM
- Development of the TRDENS transition density code
 - Used for the NCSM/RGM (one- and two-body) and other
 - MPI, memory intensive, CS assistance welcome
- LLNL Grand Challenge Award: 25 kCPU hours per week
- Year 2: Further work on non-local densities
- Year 3: Deuteron projectile within NCSM/RGM; nucleon scattering on medium-mass nuclei including excited states (IT NCSM); $A=12$ nuclei with chiral EFT NN+NNN
- Year 4,5: Realistic non-local potentials for nucleon-nucleus, deuteron-nucleus, connection to phenomenological reaction theory
- High-profile science: Capture reactions - $^3\text{He}(\alpha,\gamma)^7\text{Be}$, alpha-clustering