Ab initio reactions of nucleons on light nuclei

Petr Navratil (LLNL)
Collaborators: Sofia Quaglioni (LLNL), Robert Roth (TU Darmstadt)
UNEDF SCIDAC meeting, Pack Forest, WA, 6/22/2009

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The \textit{ab initio} NCSM/RGM in a snapshot

- Ansatz: \(\Psi^{(A)} = \sum \int d\vec{r} \phi_{\nu}(\vec{r}) \hat{A} \Phi_{\nu \vec{r}}^{(A-a,a)} \)

- Many-body Schrödinger equation:

\[H \Psi^{(A)} = E \Psi^{(A)} \]

\[\sum_{\nu} \int d\vec{r} \left[\mathcal{H}_{\mu \nu}^{(A-a,a)}(\vec{r}', \vec{r}) - E \mathcal{N}_{\mu \nu}^{(A-a,a)}(\vec{r}', \vec{r}) \right] \phi_{\nu}(\vec{r}) = 0 \]

- Non-local integro-differential coupled-channel equations:

\[[\hat{T}_{\text{rel}}(r) + \hat{V}_C(r) - (E - E_{\nu})] u_{\nu}(r) + \sum_{\nu} \int dr' r' W_{\nu \nu}(r, r') u_{\nu}(r') = 0 \]

Fully implemented for \textit{nucleon-nucleus} basis. Work on \textit{deuteron-nucleus} basis under way.
NCSM/RGM *ab initio* calculation of $n^{-3}H$ and $p^{-3}He$ phase shifts

- NCSM/RGM calculations with $n^{+3}H$(g.s.) and $p^{+3}He$(g.s.), respectively.
- χEFT N^3LO NN potential: convergence reached with two-body effective interaction
- Benchmark with Alt, Grassberger and Sandhas (AGS) results [PRC75, 014005(2007)]
 - What is missing? - $n^{+3}H$(ex), 2n+d, $p^{-3}He$(ex), 2p+d configurations

The omission of three-nucleon partial waves with $1/2 < J \leq 5/2$ leads to effects of comparable magnitude on the AGS results. Need to include target excited states!
$n^{-4}\text{He} \& p^{-4}\text{He}$ phase shifts from accurate NN interactions

- ^{-4}He states: g.s., 0$^+$
- Reasonable agreement with experiment for $^2S_{1/2}$, $^2P_{1/2}$, $^2D_{3/2}$ channels
- Coulomb under control

Insufficient spin-orbit strength: $^2P_{3/2}$ underestimated \rightarrow NNN needed

CD-Bonn the best description of $^2S_{1/2}$ phase shifts
First ever *ab initio* calculation of A_y in for a $A=5$ system. *Strict test of inter-nucleon interactions.*

NCSM/RGM *ab initio* calculation of $n+^7\text{Li}$ scattering

^7Li
- Full NCSM up to $N_{\text{max}}=10$ (12 possible)
- IT-NCSM up to $N_{\text{max}}=18$
 - Convergence of both ground and excited states

^8Li
- NCSM predicts unobserved low-lying 0^+ and 2^+ states
- NCSM/RGM with ^7Li $3/2^-$ and $1/2^-$ bound states included
- Up to $N_{\text{max}}=14$ so far ($\hbar\Omega=20$ MeV used)
 - Moderate changes from $N_{\text{max}}=6$ to $N_{\text{max}}=14$
- Bound states
 - 2^+ state bound by 1.07 MeV (expt 2.03 MeV)
 - 1^+ state bound by 0.18 MeV (expt 1.05 MeV)

![Graph](https://via.placeholder.com/150)

^7Li

^7Li

^8Li

PRC 73, 065801 (2006)
NCSM/RGM \textit{ab initio} calculation of $n+^7\text{Li}$ scattering

- ^7Li 3/2$^-$ and 1/2$^-$ bound states included
- SRG-$N^3\text{LO}$ NN interaction with $\Lambda=2.02$ fm$^{-1}$
 - Up to $N_{\text{max}}=14$ so far (h$\Omega=20$ MeV used)
 - Moderate changes from $N_{\text{max}}=6$ to $N_{\text{max}}=14$
 - 2^+ and 1^+ states bound
 - Other states unbound

\begin{align*}
4.652 & \quad 7^2 \text{Li} \\
2.467 & \quad ^4\text{He}+t \\
0.47761 & \quad j=\frac{3}{2}; T=\frac{1}{2}
\end{align*}

\begin{align*}
3.21 & \quad 1^+ \text{Li} \\
2.255 & \quad 3^+ \text{Li} \\
0.9808 & \quad ^8\text{Li}
\end{align*}

- S-wave scattering length
 - Expt: $a_{01}=0.87(7)$ fm
 - $a_{02}=-3.63(5)$ fm
 - Calc: $a_{01}=1.31$ fm
 - $a_{02}=-0.18$ fm

Qualitative agreement with experiment. Calculated broad 1^+ resonance, predicted narrow 0^+ resonance. The 3^+ resonance not seen when ^7Li 7/2$^-$ state not included.
NCSM/RGM *ab initio* calculation of \(n + ^7\text{Li} \) scattering

- \(^7\text{Li} 3/2^-, 1/2^-\) and \(7/2^-\) states included
- Result for \(N_{\text{max}}=8 \) shown
- \(2^+ \) and \(1^+ \) states bound (slightly more)
- \(0^+ \) and \(1^+ \) resonances not affected
- \(3^+ \) and \(2^+ \) resonances appear
- Improvement of S-wave scattering length

\[
\begin{align*}
\text{Expt: } a_{01} &= 0.87(7) \text{ fm} \\
a_{02} &= -3.63(5) \text{ fm} \\
\text{Calc: } a_{01} &= 0.73 \text{ fm} \\
a_{02} &= -1.42 \text{ fm}
\end{align*}
\]

Good match of bound states and narrow resonances with the \(^8\text{Li} \) NCSM result. Predicted narrow \(0^+ \) and \(2^+ \) resonance. Seen at recent \(p + ^7\text{Be} \) FSU experiment.
Nucleon-^{12}C scattering with SRG-$N^3\text{LO}$ NN potential

- ^{12}C
 - Full NCSM up to $N_{\text{max}}=8$
 - IT NCSM up to $N_{\text{max}}=18(!)$
 - Perfect agreement for both the 0^+ ground- and 2^+ excited state up to $N_{\text{max}}=8$
 - Convergence of the IT-NCSM
 - $\hbar\omega=24$ MeV used
 - ^{13}N, ^{13}C within the NCSM
 - $1/2^+$ state too high by ~ 6 MeV
- ^{13}N, ^{13}C within the NCSM/RGM
 - up $N_{\text{max}}=16$ with ^{12}C g.s. and 2^+ included
 - ^{13}C:
 - $1/2^-$ bound by 5.34 MeV (expt 4.95 MeV)
 - $3/2^-$ bound by 2.23 MeV (expt 1.27 MeV)
 - $1/2^+$ bound by 0.03 MeV (expt 1.86 MeV)
 - Excitation energy 5.31 MeV (expt 3.09 MeV)

Excitation energy of the $1/2^+$ state drops by 4 MeV when $n-^{12}\text{C}$ long-range correlations included
p-^{12}C scattering with SRG-N3LO NN potential

- Experiments with a polarized proton target under way
- NCSM/RGM up $N_{\text{max}}=16$
 - ^{12}C g.s. and 2^+ included
 - $1/2^-$ state bound by 2.9 MeV
 - ^{13}N ground state
 - Other states unbound
 - $1/2^+$ resonance at ~1.2 MeV
 - $5/2^+$ resonance
 - Good stability: Moderate changes from $N_{\text{max}}=6$ to $N_{\text{max}}=16$
 - Minimal difference between $N_{\text{max}}=14$ and $N_{\text{max}}=16$

Qualitative agreement with experiment
The deuteron projectile: Norm kernel

\[\langle 1, \ldots, A-2 | r' \rangle (A-1, A) \begin{aligned} 1 & - 2(A - 2) \hat{P}_{A-2, A-1} + \frac{1}{2} (A - 2)(A - 3) \hat{P}_{A-2, A-1} \hat{P}_{A-3, A-1} \end{aligned} \begin{aligned} \mu, \ell' & - 2(A-2) \times \end{aligned} \begin{aligned} v, \ell \end{aligned} (A-2) (2) + (A-2)(A-3)/2 \times \begin{aligned} \langle (A-2) | r \rangle (A-1, A) \end{aligned} \]

\[SD \left\langle \psi_{\mu_1}^{(A-2)} | a^+ a^+ a a \psi_{\nu_1}^{(A-2)} \right\rangle_{SD} \]
The deuteron projectile: Hamiltonian kernel

\[
\begin{align*}
-2(A - 2)(A - 3) & V_{A-1,A-3} \hat{P}_{A-2,A-1} \\
\end{align*}
\]
d-α scattering: Progress so far

- Norm kernel coded
- Hamiltonian kernel partially coded
 - Term with three-body density in progress
- Convergence reached for d-α norm kernel (physics - Pauli principle)
Toward the first \textit{ab initio} description of the Deuterium-Tritium fusion

- Solve the many-body Schrödinger equation in the Hilbert space spanned by the RGM basis states:

\[\int dr \ r^2 \left\langle r' \ \alpha \ \frac{\hat{A}_1 (H - E)}{A_1} \ \alpha \ r \ \alpha \ r_n \ \frac{\hat{A}_2 (H - E)}{A_2} \ T \ D \right| \left(g_1 (r) \ \frac{r_r}{r} \right) = 0 \]

- Progress so far: Norm kernels calculated

The D+T norm kernel:
(a) diagrammatic representation of the “direct” and “exchange” components; exchange components for the spin-parity-isospin (b) 1/2+1/2 and (c) 3/2+1/2 channels
FY09 accomplishments

- Development of *ab initio* many-body reaction theory by merging the NCSM and the RGM (P. Navratil and S. Quaglioni)
 - Results with NN potentials used by UNEDF collaboration
 - n^{-7}Li with SRG-N3LO using the importance-truncated NCSM
 - p^{-12}C with SRG-N3LO using the importance-truncated NCSM
 - n^{-16}O with SRG-N3LO using the importance-truncated NCSM
 - Collaboration with R. Roth (TU Darmstadt)
 - Deuteron-nucleus scattering under development

- Development of the TRDENS transition density code
 - Distribution of two-body density structure over groups of processors

- Similarity-renormalization-group evolution of NN+NNN interactions
 - Collaboration with D. Furnstahl (OSU) and E. Jurgenson (OSU)

- $A=14$ nuclei with chiral EFT NN+NNN up to $N_{\text{max}}=8$
 - Transformation of NNN to SD basis up to $N_{\text{max}}=8$
 - Collaboration with J. Vary, P. Maris, H. Nam, E. Ormand and D. Dean
Publications relevant to UNEDF in 2008/2009

- S. Quaglioni, P. Navratil, *Ab initio many-body calculations of n-3H, n-4He, p-3He, 4He, and n-10Be scattering*, PHYSICAL REVIEW LETTERS 101, 092501 (2008)

Future plan

- The rest of Year 3
 - Complete \textit{n-7Li} calculations
 - Begin \textit{n-8He} investigation
 - Continue work on deuteron-nucleus formalism (supported by LDRD)

- Year 4
 - \textit{n-8He}, \textit{n-9Li} calculations
 - Development of \textit{3H} and \textit{3He} – nucleus formalism (supported by LDRD)
 - Development of the coupling of NCSM/RGM and NCSM \rightarrow NCSMC
 - Similarity-renormalization-group evolution of NN+NNN interactions
 - Application to \textit{p}-shell nuclei (supported by DOE/SC/NP)
 - Further development of importance-truncation NCSM scheme

- Year 5
 - High profile science: Capture reactions - $^3\text{He}(\alpha,\gamma)^7\text{Be}$

- Computational challenges:
 - \textit{n-body} density \((n>2)\) calculations
 - Distribution of structure allocation, parallelization